

Application note

Moisture measurement in carbon dioxide (CO₂) for carbon capture utilization and storage (CCUS) applications

Benefits:

Laser technology has advantages over other types of sensor technologies:

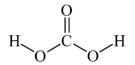
- Rapid speed of response, typically in seconds, to changes in process moisture to allow for tight process control
- With no change in calibration, tunable diode laser absorption spectroscopy (TDLAS) technology does not require recalibration, resulting in lower maintenance requirements and cost
- Non-contact measurement eliminates wear and tear on a wetted sensing system due to corrosive gases and other process contaminants
- Integral sample system minimizes interference on the moisture measurement from other components in the process
- Hot permit not required with through-the-glass programming
- Analog and digital communications available
- Aurora View software enable remote service, trend graphing and diagnostics

Summary

Trace moisture (water vapor) is measured using a Tunable Diode Laser Absorption Spectroscopy (TDLAS) based analyzer in carbon dioxide (CO_2) gas that is transported through pipelines.

Application

Carbon management technologies help limit rising atmospheric CO_2 concentrations. CCUS is a key method for CO_2 management in energy and emission-intensive industries, processes and operations. This process captures CO_2 before it enters the atmosphere and stores it underground or uses it for an application like enhanced oil recovery (EOR). CCUS technologies are typically used on the largest CO_2 emitting industrial processes to reduce emissions.


EOR involves injecting CO_2 gas into a depleting oil well to force the oil to the surface and reduce its viscosity.

Transportation of CO₂ involves moving the CO₂ from capture sites to storage and/or end-use facilities. Transporting large amounts of CO₂ by road or ships is not economical. Pipelines are used to transport captured CO₂ over long distances. Normally, CO₂ pipelines are operated at higher pressure, with primary compressors located where the CO₂ is injected and booster compressors located as needed along the length of the pipeline.

Challenges

Protecting these CO₂ pipelines from corrosion is critical. Measurement and control of water vapor is key for the processing, transmission, and compression for injection of CO₂ used in EOR or other usage processes. Excess amounts

of moisture in CO_2 gas can lead to carbonic acid (H_2CO_3) formation causing operational problems and accelerated corrosion, which damages metal infrastructure, including pipelines. High moisture levels can cause condensation at compressor stations leading to accelerated compressor corrosion. For this reason, the water content measurement

CO2 + H2O --- H2CO3

is required on a continuous basis to ensure dehydration efficiency.

Maintaining a low level of moisture in the transported CO_2 is achieved through drying the CO_2 gas. Dehydration of CO_2 is accomplished through different methods, including triethylene glycol (TEG) contactors, molecular sieve desiccant dryers, and membrane separators. Each of these methods consumes considerable amounts of energy and requires reliable moisture measurement to maximize its efficiency. Inadequate dehydration of CO_2 gas could result in free water condensing in the pipeline and forming corrosive compounds, reducing pipeline life.

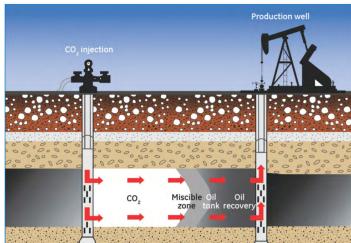
Solutions

Traditionally, capacitance and piezoelectric technologies have been used to measure moisture in CO₂ gas streams, but these types of sensors can deteriorate over time, if not implemented properly as they are directly exposed to the process. Panametrics' experience in moisture measurement includes aluminum oxide, polymer, capacitance, chilled mirror and laser based analyzers. Panametrics Aurora TDLAS hygrometer enables EOR and carbon sequestration facilities to monitor moisture content in real time with high precision and reliability.

Application specification

The CO_2 used in this process must be dried to level of -40 °C dew point, about 130 PPMv, or lower.

Typical moisture content range:	0 - 1000 PPMv
Process Phase:	Gas phase CO ₂
Operating Pressure:	100 – 200 barg


Panametrics, a Baker Hughes business, provides solutions in the toughest applications and environments for moisture, oxygen, liquid and gas flow measurement.

Experts in flare management, Panametrics technology also reduces flare emissions and optimizes performance.

With a reach that extends across the globe, Panametrics' critical measurement solutions and flare emissions management are enabling customers to drive efficiency and achieve carbon reduction targets across critical industries including: Oil & Gas; Energy; Healthcare; Water and Wastewater; Chemical Processing; Food & Beverage and many others.

Join the conversation and follow us on LinkedIn linkedin.com/company/panametricscompany

