AquaCUT Plus RPM increased oil production by 110\%, reduced water cut by more than 18\% in a carbonate formation in North Africa

CHALLENGES

- High water cut (~85\%), restricting oil production
- Economical production offset by high volumes of produced water, treatment cost, and disposal cost
- High cost for rig intervention
- Well temperature of $165^{\circ} \mathrm{F}\left(74^{\circ} \mathrm{C}\right)$
- Artificially producing well using sucker-rod pumping system

SOLUTION

- Baker Hughes bullheaded AquaCUT™ Plus relative permeability modifier (RPM) in a rigless operation. The system successfully:
- Selectively restricted water, versus shutting off all fluid flow
- Decreased water production, with minimal impact on hydrocarbon production
- StimVision ${ }^{T M}$ matrix acidizing software provided a fully-engineered solution
- Thorough matrix testing was performed to optimize the AquaCut Plus RPM formulation for formation characteristics/fluids, and temperature

AquaCut Plus RPM significantly reduced relative-permeability-to-water by more than 90% with little, if any, change to the relative permeability to oil. Reduction in relative-permeability-to-water remained after three cycles, indicating treatment longevity.

bakerhughes.com

Copyright 2023 Baker Hughes Company. All rights reserved. 84892

RESULTS

- Pumped through rigless intervention with zero NPT or HSE incidents
- Reduced water cut by more than 18%
- Increased oil production by more than 110\%
- Reduced overall carbon emissions and costs by reducing water cut, requiring less treatment and produced water disposal

Baker Hughes

