

Doc Number: 500031032 Rev: A Effective Date: 5 February 2025

# **FusionPro Operations and Installation Manual**

Copyright 2025 Baker Hughes Company. All rights reserved.

# Legal Information

# Copyright 2025 Baker Hughes Company. All rights reserved.

The information contained in this document is confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

# **Third Party Trademarks**

Mark

**MOXA**®

Company

Registered trademark of Moxa Inc.

# **Revision History**

| Rev.                                                                         | PR | Amendment Detail | Author | Reviewer/Approver | Effective Date |
|------------------------------------------------------------------------------|----|------------------|--------|-------------------|----------------|
| Current Revision                                                             |    |                  |        |                   |                |
| A 105852 Initial Release Gerald Otoide Rod Smith, Jeremy<br>Hillshafer 5 Feb |    |                  |        | 5 Feb 2025        |                |
| Three Previous Revisions                                                     |    |                  |        |                   |                |
| -                                                                            |    |                  |        |                   |                |
| -                                                                            |    |                  |        |                   |                |
| -                                                                            |    |                  |        |                   |                |

| Table of Contents                                                                                    |                   |
|------------------------------------------------------------------------------------------------------|-------------------|
| Introduction                                                                                         | 7                 |
| Features/Functions and Benefits                                                                      | 8                 |
| Safety                                                                                               |                   |
| Safety Recommendation                                                                                | 9                 |
| <u>Common Safety Conventions</u>                                                                     | 11                |
| <u>FusionPro VSD Safety Labels and Descriptions</u>                                                  | 12                |
| Personal Protective Equipment (PPE)                                                                  | 18                |
| Flectrical Disconnect Handle with Interlock and Override                                             | 18                |
| Shipping and Handling                                                                                | 19                |
| <u>Safoty/Commissioning Chocklict</u>                                                                | 20                |
| Safety Checklist                                                                                     | 20                |
| <u>Salety Checklist</u>                                                                              | 2U<br>22          |
|                                                                                                      | 22                |
| Installation                                                                                         | 26                |
| Initial checks                                                                                       | 26                |
| Equipment Placement and Mechanical Installation                                                      | 26                |
| Electrical Power Installation                                                                        | 27                |
| <u>Service Requirement</u>                                                                           | 27                |
| <u>Grounding and Bonding Requirements</u>                                                            | 27                |
| Power Wiring Requirements                                                                            | 28                |
| Control Circuit Installation                                                                         | 35                |
| Control Panel Circuits Available for Customer Use                                                    | 38                |
| FusionPro System Controller                                                                          | 40                |
| <u>Control Power Transformer Tap Selection</u>                                                       | 42                |
| Moxa Installation                                                                                    | 44                |
| Internal Mounting of MOXA Modules                                                                    |                   |
| 1/0 Wiring                                                                                           | 47                |
| <u>NOXA</u> Information                                                                              | ····/<br>//7      |
| MOXA monnuton                                                                                        | <b>-</b> 7/<br>52 |
| <u>iyo chumier Jumper Setting</u>                                                                    | 52                |
| <u>Down-noie Sensor Installation</u>                                                                 | 53                |
| <u>Appendix</u>                                                                                      | 54                |
| Appendix A: Drive Specifications and Ratings                                                         | 54                |
| <u>Specifications</u>                                                                                | 54                |
| Nameplate                                                                                            | 55                |
| <u>Appendix B: Model Designation and Variable Torque VSD Ratings</u>                                 | 58                |
| Appendix C: Circuit Breakers and Cable Sizing                                                        | 62                |
| <u>Appendix D: Dimensions and Approximate Weights</u>                                                | 65                |
| <u> Appendix E: Sine-Wave Filter (SWF) PWM Operation</u>                                             | 66                |
| Setup of FusionPro variable speed drives with SWF capability applied on Electrical Submersible Pumps | 66                |
| SWF PWM SYSTEM OVERVIEW.                                                                             | 66                |
|                                                                                                      | 68                |
| <u>FIITER FOUITS</u>                                                                                 | 68                |
| Appenaix F: Motor Overload Protection                                                                | 69                |
| Appenaix G: Schematics                                                                               | 71                |

# **List of Figures**

| Figure 1: DC Bus voltage measurement locations.                                                                    | . 11     |
|--------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2: Danger Label: Shock Hazard                                                                               | 12       |
| Figure 3: Danger Label Arc-Flash                                                                                   | 12       |
| Figure 4: Danger Label: "Disconnect Source."                                                                       | 13       |
| Figure 5: Electrical Warning Symbol                                                                                | 13       |
| Figure 6: Warning Label: "380~480V Input."                                                                         | 13       |
| Figure 7: Warning Label: "Automatic Start"                                                                         | 14       |
| Figure 8: Warning Label: "Back-spin Regeneration"                                                                  | 14       |
| Figure 9: Warning Label: "Motor Overload Setting"                                                                  | 15       |
| Figure 10: "Warning Label:" High Heater Voltage and Temperature""                                                  | 15       |
| Figure 11: Warning Label: "Short Circuit Current"                                                                  | 15       |
| Figure 12: Warning Label: "ZIU Voltage"                                                                            | 16       |
| Figure 13: Caution Label: "Capacitor Discharge"                                                                    | 16       |
| Figure 14: Notice Label: "Ground"                                                                                  | 16       |
| Figure 15: Notice Label: "Lifting Points"                                                                          | 17       |
| Figure 16: Notice Label: "Strapping"                                                                               | 17       |
| Figure 17: Notice Label: "TUV C-US"                                                                                | 17       |
| Figure 18: "Notice Label: "TUV T-Mark"                                                                             | 17       |
| Figure 19: "Notice Label: "CE Mark"                                                                                | 17       |
| Figure 20: "Notice Label: "QR Codes"                                                                               | 18       |
| Figure 21: "Warning Label: "Ear Protection"                                                                        | 18       |
| Figure 22: Standard Overhead lifting method for safe movement of FusionPro VSDs                                    | 19       |
| Figure 23: Strapping details.                                                                                      | 20       |
| Figure 24: Typical Site Equipment Placement                                                                        | 26       |
| Figure 25: Grounding the FusionPro Drive and Enclosure                                                             | 28       |
| Figure 26: Ferrous Gland Plate Wiring Technique                                                                    | 29       |
| Figure 27: VSD 130-260kVA 6 Pulse J-Box                                                                            | 29       |
| Figure 28: VSD 130-260kVA 12 Pulse J-Box                                                                           | 30       |
| Figure 29: VSD 325/390kVA 6 Pulse J-Box                                                                            | 30       |
| Figure 30: VSD 454/520kVA 6 Pulse J-Box                                                                            | 31       |
| Figure 31: VSD 325 kVA 12 Pulse J-Box                                                                              | 31       |
| Figure 32: VSD 390kVA 12 Pulse J-Box                                                                               | 32       |
| Figure 33: VSD 454/520kVA 12 Pulse J-Box                                                                           | 32       |
| Figure 34: VSD 325/390kVA 24 Pulse J-Box                                                                           | 33       |
| Figure 35: VSD 454/520kVA 24 Pulse J-Box                                                                           | 33       |
| Figure 36: Power Wiring Components                                                                                 | 34       |
| Figure 37: Control Panel (rotated 90° counterclockwise)4                                                           | 10       |
| Figure 38: FusionPro Drive HMI PCB Assembly (Carrier Interface Board and Single-Board Computer                     | r)<br>∕1 |
| Figure 39: Dual Connector Pinout at P1-A and P1-B                                                                  | 42       |
| Figure 40: CPT Tap Terminals (CPT1 shown)4                                                                         | 13       |
| Figure 41: 24 VDC Controls (Including E1242-T MOXA) at VSD Customer Interface Panel (Rotated 90 Counterclockwise)  | )°<br>16 |
| Figure 42: Moxa Profiles and Physical Dimensions (Characteristics of I/O channel connectors vary per module type)4 | 19       |

| Figure 43: Other Moxa Module Details4                                                   | 9          |
|-----------------------------------------------------------------------------------------|------------|
| Figure 44: Moxa DIN-Rail Module Mounting                                                | 51         |
| Figure 45: Moxa Chassis Grounding                                                       | 52         |
| Figure 46: Power Wiring for Moxa Modules                                                | 52         |
| Figure 47: Moxa Configuration Jumper Access                                             | 53         |
| Figure 48: Moxa Configuration Jumper Positioning                                        | <b>5</b> 3 |
| Figure 49: Typical ESP Down-hole Sensor Circuit                                         | <b>5</b> 3 |
| Figure 50: Zenith Surface PCBA                                                          | 54         |
| Figure 51: Recommended Cabling Options for Connection from PCBA to Choke                | 54         |
| Figure 52: FusionPro SWF Drive Derate Curve                                             | 6          |
| Figure 53: Filter Fault Display                                                         | 8          |
| Figure 54: Motor Overload Trip Delay Curve                                              | 0'         |
| Figure 55: Schematic 500030391 Rev A, SHT-1; FusionPro 2N4/4N4 System Control and Power | 71         |
| Figure 56: Schematic 500030391 Rev A, SHT-2; FusionPro 2N4/4N4 System Control and Power | /2         |
| Figure 57: Schematic 500030391 Rev A, SHT-3; FusionPro 2N4/4N4 System Control and Power | /3         |
| Figure 58: Schematic 500030391 Rev A, SHT-4; FusionPro 2N4/4N4 System Control and Power | <b>'4</b>  |
| Figure 59: Schematic 500030391 Rev A, SHT-5; FusionPro 2N4/4N4 System Control and Power | ′5         |
| Figure 60: Schematic 500030391 Rev A, SHT-6; FusionPro 2N4/4N4 System Control and Power | <b>'</b> 6 |
| Figure 61: Schematic 500030391 Rev A, SHT-7; FusionPro 2N4/4N4 System Control and Power | 77         |
| Figure 62: Schematic 500030391 Rev A, SHT-8; FusionPro 2N4/4N4 System Control and Power | /8         |

# Introduction

The Baker Hughes FusionPro<sup>™</sup> variable speed drive (VSD) is a voltage source inverter (VSI) low voltage VSD that gets its power from the utility supply or generator and uses a six-pulse siliconcontrolled rectifier (SCR) front end to convert the incoming AC power into an intermediate DC power. The DC link comprises inductors and capacitors connected in series and/or parallel (as required per power rating). It filters (smooths out) the DC power and provides a stable voltage for the inverter section. The inverter section uses insulated gate bipolar transistors (IGBT) to convert the DC power into variable voltage variable frequency AC power which is used to drive an electrical submersible pump (ESP), or a surface motor. The VSD's inverter output could be selected to be either an ESP mode or pulse width modulation (PWM) mode depending on the application. For applications where harmonic reduction is required, the Baker Hughes FusionPro VSDs 12- or 24-pulse drives can be configured to meet such needs. The VSD is designed to meet all applications that require a variable frequency source, and it operates directly from 380 to 480 VAC 3-phase 50/60 Hertz power. The drive is compatible with both 3-phase and single-phase input operations!

The VSD is packaged in a weatherproof (NEMA 4, IP56) enclosure. The waterproof cabinets use a cooling system that eliminates the inefficiencies and reliability problems associated with heat pumps. Two NEMA 4 enclosure sizes – VSD 0130-260kVA and VSD 0325-520kVA – are currently manufactured.

The FusionPro<sup>™</sup> VSD uses field programmable gate array (FPGA) technology and a FusionPro motor control (FPMC) firmware to control the speed and torque of induction motors and permanent magnet motors effectively and efficiently in real time. The VSD is equipped with the FusionPro Control System which has several features that provide advanced communication capability, extensibility, and functionality. It has powerful processing capabilities and provides effective system control, monitoring, logging, interfacing, secure remote serviceability, and communications to meet and exceed the requirements of modern applications. It includes WI-FI and TCP/IP ports that classify it as an Industrial Internet of Things (IIOT) endpoint. More information about the functionality and capabilities of the FusionPro control system can be found in the FusionPro System Controller manual (PN 500031487).



<sup>1</sup>Single phase operation is also possible (consult an applications specialist for assistance concerning this non-typical, specialized application).

# Features/Functions and Benefits

| Features/Functions                                                                                                                                                       | Benefits                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Connectivity, telemetry ready                                                                                                                                            | Allows network connection or remote operation                                     |
| Downloadable configuration files                                                                                                                                         | Ease of multiple drive setup                                                      |
| Control system expandability via MOXA modules                                                                                                                            | Flexibility in system design and configuration                                    |
| Field upgradeable software                                                                                                                                               | Drive does not have to be removed from the location to modify or upgrade software |
| Automatic and continuous data log function                                                                                                                               | About six months of recorded data without user configuration or intervention      |
| Surface mount electronics technology                                                                                                                                     | Smaller circuit boards with fewer connections lead to higher reliability          |
| Redundant backup of data and operating due to failure                                                                                                                    | Reduces the chance of data and protection loss parameters                         |
| Date/time stamp of event, shutdown history, and log data                                                                                                                 | Helps identify problems or trends                                                 |
| Diagnostic/alarm windows automatically pop<br>up                                                                                                                         | Automatic display of problems without operator security clearance                 |
| Enclosures comply with industrial standards<br>NEMA 4 (IP56)                                                                                                             | Reliable operation in any environment                                             |
| ESP or sine-wave filter (SWF) PWM                                                                                                                                        | Two drive options (ESP and SWF PWM) are available depending on the output         |
|                                                                                                                                                                          | waveforms required for an application                                             |
| Power ride through, backspin detection and startup, MaxStart, MaxRate Gas Prime, and IIoT                                                                                | Increase uptime                                                                   |
| Smart motor load protection, pump curve<br>protection, output transformer saturation<br>protection, and auto cable voltage<br>compensation                               | Increased operation reliability                                                   |
| Flexible control, MaxRate Gas Control,<br>MaxPoint plus, Hz to PID on the fly                                                                                            | Optimized production                                                              |
| This drive family implements the foundation<br>FusionPro human-machine interface (HMI)<br>that integrates and expands upon the<br>functionality of legacy BH drive HMIs. | Maintenance and operations personnel need to learn the interface only once        |

# Safety

# Safety Recommendation

- It is required that all qualified electrical maintenance personnel read and understand this manual in its entirety before installing, operating, or servicing this drive.
- The drive must only be installed and serviced by qualified and authorized personnel following the guidelines in this manual, relevant installation guides, and all applicable local and national electrical codes.
- Thorough checks must be made to ensure all power sources are disconnected before installation, maintenance, and repair jobs.



# 

FusionPro VSDs require and produce potentially lethal voltage levels. Failure to comply with the safety recommendations may lead to death, serious personal injury, and/or equipment damage.



# 

When the FusionPro VSD is connected to customer systems through communication protocols such as RS232, RS485, and Ethernet, it may be started/stopped remotely without warning.

Injury or death may occur if the communication protocol is not disengaged and locked out during all maintenance activities.

- Coordinate with all applicable parties involved with the control and monitoring of the VSD.
- Disengage and lock out the start/stop capability of the communication protocol for the duration of the maintenance activity.
- All warnings, cautions, notes, and instructions must be followed.
- Appropriate PPE shall be used as required for each related task. More information can be found in the document <u>2013\_ESA\_Complete\_Handout</u> (NFPA 70E section H).
- This drive may contain SCADA or telemetry connections causing automatic starting. To prevent unexpected starts, the service person must disconnect any communication devices attached to the drive. When performing maintenance or troubleshooting, always assume communication protocols are being utilized and take appropriate action.
- Ensure Earth ground is properly bonded before making any contact with the drive or attached equipment. See Figure 25.

- Serious or fatal electrical shock or burns may result from failure to isolate the incoming electrical power source(s) before servicing (follow NFPA 70E Article 120). Be aware that multiple power sources may be present.
- Do not connect or disconnect wiring while power is applied to the drive.
- Do not remove covers or touch any components while the power is on.
- Do not bypass the internal power switches or circuit breakers of the drive for any reason.
- Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.
- Replace any protective covers or shields that may have been removed during servicing before applying power to the drive.
- Do not connect or operate this unit with visible damage or missing/removed parts.
- This unit may start unexpectedly upon application of power. Clear all personnel from the drive and other connected equipment and/or remove any mechanical hazards that may be present before power is applied to this drive.
- This drive contains Electrostatic Discharge (ESD) sensitive parts and assemblies. Static control precautions are required when installing, testing, or servicing this unit.
- Connected downhole motor may generate back-fed voltage. Once all drive incoming power is removed, isolate downhole motor power potential at the vented junction box before servicing.
- Any unauthorized modifications not provided, installed, or approved by Baker Hughes may result in the following:
  - injury or death
  - serious property or environmental impact
  - damage or failure of the equipment
  - voiding the unit certification
  - voiding the product warranty
- Baker Hughes is not responsible for any unauthorized use of the equipment; such use may impede physical and software protections provided by the equipment.
- This equipment contains a Wi-Fi module (FCC ID: N6C-PMACS and ISED ID: 4908A-PMACS) which operates at 2.4GHz and 5GHz (802.11 a/b/g/n/ac). The integration of this module has been tested and found to be within the limits of FCC Part 15 and should not cause harmful interference. The antenna supplied with the system must not be modified in any way. Only a replacement of the same antenna type and gain is permitted.
- This equipment meets the electromagnetic compatibility requirements of IEC/EN 61800-3 category 3 environments for the EMC Directive 2014/34/EU and FCC Part 15. Electromagnetic compatibility impact must be considered for any alternate component changes, add-ons, or enclosure alterations of this equipment.
- In areas with high humidity or significant temperature fluctuations, it is advisable to use continuous heating with heaters to minimize the risk of condensation. For more details or to purchase a heater kit, please contact your sales representative.

- **Warning!** Motor overload must be properly set for motor protection. Details on this can be found in <u>Appendix F</u>: Motor Overload ProtectionAlso, see safety topics in <u>Figure 9</u>.
- Ensure equipment is powered down at least 300 seconds and that the capacitors are discharged to a safe level below 50VDC before servicing to avoid the risk of potentially lethal electrical shock from energy stored in drive (capacitors).
- **Warning!** DC bus capacitors can store lethal energy. Before servicing, verify their voltage is safely discharged by measuring at points shown in <u>Figure 1</u> below for 2N4 and 4N4. Voltage must be below 50VDC. See the safety topic in <u>Figure 13</u>.



Figure 1: DC Bus voltage measurement locations.

# **Common Safety Conventions**



**DANGER** indicates a hazardous situation which if not avoided, will result in death or serious injury.

**WARNING** indicates a hazardous situation which if not avoided, could result in death or serious injury.

**CAUTION** indicates a hazardous situation which if not avoided, could result in minor or moderate injury.

**NOTICE** indicates instructional information for proper equipment management.

# **FusionPro VSD Safety Labels and Descriptions**



This is a danger label. Drives are powered by sources with high potential energy that operate on lethal voltages. All prospective energy sources should be removed per LOTO procedures before entering the enclosure to do work or make observations.

#### Figure 2: Danger Label: Shock Hazard



This is an arc-flash danger label. There is an inherent potential for an arc flash explosion with this equipment. The upper label is included on all drives to warn of the potential hazard. Before working on or around any of this equipment, perform a Hazardous Risk Assessment to determine the appropriate PPE necessary for the task to be performed.



In North America, installation sites must be assessed per NFPA 70E or CSA Z462. After installation, another label should be attached by a qualified evaluator indicating the calculated arc-flash risk for the system.

#### Figure 3: Danger Label Arc-Flash



**HIGH VOLTAGE ALWAYS** PRESENT UNLESS DISCONNECTED AT UTILITY

HAUTE TENSION TOUJOURS PRÉSENTE, SAUF SI DÉCONNECTÉE DE LA SOURCE ÉLECTRIQUE Although the drive's molded case circuit breaker(s) cuts offline voltage from the main cabinet, it remains present in the junction box at the line side of the MCCB(s). Upstream power should be removed before entering this compartment. Otherwise, appropriate PPE is required to access the junction box.

#### Figure 4: Danger Label: "Disconnect Source."



The electrical warning symbol is a lightning bolt mark enclosed in a triangle. The electrical warning symbol is used to indicate locations where hazardous voltage levels are present and conditions may cause serious injury if proper precautions are not followed.

#### Figure 5: Electrical Warning Symbol



VOLTAGE ALWAYS PRESENT ON INPUT TERMINALS OF MAIN DISCONNECT(S), INPUT POWER TERMINALS, AND INPUT POWER CABLES UNLESS DISCONNECTED AT THE SOURCE / UTILITY.

This label is present to notify of the allowable operating voltage range. Note that it is necessary to modify tap settings on all control power transformers if a lower voltage is used than 480V input that is typically pre-configured. It also reminds one that the line side of molded case switches or circuit breakers is energized until isolated from source power.

#### Figure 6: Warning Label: "380~480V Input."

| $\bigwedge$ |                                                                                                                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u></u>     | Equipment may be configured to start automatically or remotely.<br>L'équipement peut être configuré pour démarrer automatiquement ou à<br>distance.                                                                                                                                                      |
|             | Death, serious injury or a pressure release can occur.<br>La mort, des blessures graves ou une décharge de pression peuvent<br>survenir.                                                                                                                                                                 |
|             | <ul> <li>Lockout and Tagout equipment before servicing.</li> <li>Cadenassez et étiquetez avant toute intervention de maintenance.</li> <li>Read and follow the guidelines identified in the operations manual.</li> <li>Lisez et suivez les directives décrites dans le manuel d'utilisation.</li> </ul> |

FusionPro drives are capable of being started remotely via SCADA or other telemetry control devices. Perform LOTO, then disable all added remote-control interfaces when servicing and troubleshooting. Do not restore remote operability until related tasks are completed. It is best practice to always communicate the service activities with the control room before starting work.

# Figure 7: Warning Label: "Automatic Start"



This is a Back-spin regeneration warning label. Back-spinning motors can generate lethal voltages, especially those having permanent magnets. Pressure kicks in an ESP well system can also cause rotation, thus impressing voltage across the motor leads. After ensuring voltage is no longer present on the system output, motor lead wires should be isolated at the vent box as part of the related LOTO process. Appropriate PPE and test equipment must also be implemented to ensure safety, and this work must only be performed by qualified personnel.

DANGER: Medium Voltage (up to 5kV) may be present at the vented junction box. Ensure a properly rated voltage indicator is used to prove the circuit is dead.

Figure 8: Warning Label: "Back-spin Regeneration"

WARNING: THE MOTOR OVERLOAD IS NOT FACTORY SET FOR YOUR APPLICATION! IT IS NECESSARY TO ADJUST THE OVERLOAD SETPOINT BASED ON THE ACTUAL MOTOR NAME-PLATE. USE THE "FAULTS & ALARMS" KEY TO SET O.L. PROTECTION. REFER TO THE "OVERLOAD" SECTION OF THE OPERATORS MANUAL. FOR NEC/CSA APPLICATIONS REFER TO THE "MEETING NEC/CSA REQUIREMENTS" SECTION. ADVERTISSEMENT: LA SURCHARGE DU MOTEUR NA PAS ÉTÉ RÉGLÉ EN USINE POUR VOTRE APPLICATION. IL EST NÉCESSAIRE D'AJUSTER LE POINT DE SURCHARGE MOTEUR. UTILISEZ LA FONCTION « FAULTS ALARM » POUR RÉGLER LA PROTECTION DE SURCHARGE MOTEUR. CONSULTER LA RUBIQUE « VVERLOAD » DU MANUEL D'UTILISATION. POUR LES APPLICATIONS NEC/CSA, RÉFEREZ-VOUS À LA RUBRIQUE « MEETING NEC/CSA REQUIREMENTS » This is a warning label concerning the drive's motor overload setting. By default, a new drive is configured to shut down based on the drive's maximum current capacity. For typical applications, the drive's power rating exceeds the motor's power rating by a nominal amount. To ensure proper setup of the drive's motor protection algorithm, navigate to the Motor Overload screen by selecting the Faults & Alarms menu from the Main menu and setting the motor overload based on the nameplate current rating of the motor. Refer to Section 3.10 of the FusionPro System Controller Manual for more information on motor overload setup. For further details see <u>Appendix F</u>: Motor Overload Protection.

#### Figure 9: Warning Label: "Motor Overload Setting"



This label warns that the drive's internal heater may cause local surface temperatures to exceed normal conditions (> 55°C). Furthermore, the heater may potentially be energized with line voltage (380~480V). This label is typically located on the heater chassis.

#### Figure 10: "Warning Label:" High Heater Voltage and Temperature""

SUITABLE FOR USE ON A CIRCUIT CAPABLE OF DELIVERING NOT MORE THAN 65,000 AMPS RMS SYMMETRICAL

CONÇUS POUR UNE UTILISATION SUR UN CIRCUIT DELIVRANT AU MAXIMUM 65000 AMPERES RMS SYMETRIQUES FusionPro VSDs must not be connected to a source (input transformer) having a short circuit capacity greater than 65000 Amps. Else, the drive's circuit protection system may fail to operate as intended.

#### Figure 11: Warning Label: "Short Circuit Current"



The Zenith surface board supplies roughly 120 VDC to the down-hole sensor to energize its circuits. DC voltages in this range can cause involuntary muscle reactions, discomfort, and other unexpected reactions. Avoid making contact with the sensor's circuit when energized.

#### Figure 12: Warning Label: "ZIU Voltage"



Drives implement capacitors that manipulate electrical energy in a high-voltage state. Bleeder resistors are included in the circuit to attenuate this voltage, but it takes time to reach a safer, low-voltage state. Allow at least 300 seconds after removing power and performing LOTO procedures before accessing internal power circuits, and always prove circuits dead while wearing appropriate PPE. To measure see Figure 1.

#### Figure 13: Caution Label: "Capacitor Discharge"



Correct system grounding and equipment bonding are required to ensure the proper functioning of the equipment's protective circuits. Grounding and bonding conductors provide a path to ground for lethal fault currents and voltages. Failure to correctly ground and bond equipment can lead to equipment damage, personnel injury, or death. This label is located at the ground bar inside the drive's Jbox. Reference the installation procedures in this manual for more details.

Figure 14: Notice Label: "Ground"



Drives are equipped with dedicated lifting points that should be used for top lifting. For further details, see information in the <u>Shipping and Handling</u> section of this manual.

# Figure 15: Notice Label: "Lifting Points"

PLACE TIE DOWN STRAPS HERE ONLY PLACER LES SANGLES DE SERRAGE ICI SEULEMENT When transporting a drive, straps should be used to strengthen anchoring by adding securing forces above its center of mass. However, certain surfaces may lack structural integrity for this purpose. This label indicates acceptable strapping locations. For further details, see information in the <u>Shipping and Handling</u> section of this manual.

#### Figure 16: Notice Label: "Strapping"



If equipped, this label indicates that the drive has been evaluated and certified by TUV Rheinland to meet safety requirements per US and Canadian standards for Adjustable speed electrical power drive systems.

# Figure 17: Notice Label: "TUV C-US"



If equipped, this label indicates the drive has been evaluated and certified by TUV Rheinland of NA to meet the listed European Normative (EN) safety requirements.

# Figure 18: "Notice Label: "TUV T-Mark"

CE

If equipped, this label indicates the drive has been evaluated by the manufacturer and found to be compliant with all the applicable European Union Directives.

Figure 19: "Notice Label: "CE Mark"



FusionPro drives have QR codes on the front door to scan to gain access to related support documentation using a smartphone or other capable devices. Use these ongoing links to access and download the latest documentation.

#### Figure 20: "Notice Label: "QR Codes"



This equipment can produce noise levels greater than 70dB. Ear protection should be considered when working near this equipment for an extended period. Review local regulations to determine if ear protection is required.

#### Figure 21: "Warning Label: "Ear Protection"

# Personal Protective Equipment (PPE)

The basic personal protection equipment (PPE) required for field service includes but is not limited to, steel-toe shoes, safety glasses, and a hard hat. If electrical configuration or maintenance is performed on potentially energized circuits, personal protective equipment is required to minimize the danger of electrical shock, arc flash, and/or arc blast. The level of PPE required can vary based on the available electrical energy available at the installation site. To verify the absence of voltage, the minimum **hazard risk category 2 garments** and high-voltage safety gloves are recommended. If any doubt exists, consult, and employ the recommendations published in the National Fire Protection Code, NFPA-70E.

# Electrical Disconnect Handle with Interlock and Override

The electrical disconnect on the FusionPro VSDs has an interlock feature which will not allow it to be turned on unless the cabinet door is closed. The technician can temporarily override this safety feature by turning the interlock with a slot screwdriver. This allows the cabinet door to be opened while the drive continues to operate, and power is still applied. Note that hot work is strongly discouraged, and appropriate arc flash PPE must be worn when opening cabinet doors while the drive is energized.

| High Voltage Shock                        |
|-------------------------------------------|
| Death or serious bodily injury            |
| Operate per manufacturer's specification. |
| Ensure all required PPE is used.          |
|                                           |

# Shipping and Handling

The center of gravity of the FusionPro VSD is high and as such much care needs to be taken when moving the drive to avoid tilting over and damaging the equipment. The FusionPro drive cabinet is specially designed so it can be moved either from below on a pallet with a forklift or from above using the designated lifting points. It is important to be mindful of the high center of gravity of the drive when lifting it from below to avoid tipping. Following ASME B30.26 – Ringing Hardware, the four lifting points indicated on the drive shall be used when the drive is to be lifted from the top as shown in Figure 222 below. Please refer to Appendix A: Drive Specifications and Ratings for the size and weight of specific drive models.



#### Figure 22: Standard Overhead lifting method for safe movement of FusionPro VSDs

The FusionPro VSD enclosure should be securely fastened to any vehicle used to transport the unit. Use tie-down ropes or straps to immobilize the unit during shipping and prevent shipping damage. To prevent damage during transportation, the unit must not be shipped in corrosive atmospheres.

|        | Route straps over left and right enclosure walls or through |
|--------|-------------------------------------------------------------|
|        | the provided tie down points to prevent the possibility of  |
| NOTICE | strap working its way loose during transit.                 |
|        | Each strap should have a twist between eyelets to prevent   |
|        | paint damage during transit.                                |



Figure 23: Strapping details.

# Safety/Commissioning Checklist

# Safety Checklist

The following are the general safety guidelines.

- Visual inspection for obvious shipping damage. Do not proceed if damages jeopardize the electrical or mechanical integrity of the equipment.
- Ensure correct application. The drive nameplate data, transformers, and load must be compatible.
- Remove all packing materials such as tape, foam, shipping restraints, and padding.
- Safety information and instructions must always be available for the personnel or operator at the user site at any time.
- Before starting any tasks, personnel must have carefully read and understood the safety instructions.
- If any part of this manual is lost or misplaced, the operator is obligated to find the replacement or download the latest version from the BH website.
- Keep all safety precaution signage on the equipment in legible condition, the operator (equipment owner) is responsible for replacing safety labeling which is no longer legible.
- In addition to this manual, follow all local accident and hazard-prevention regulations or general safety regulations that may apply to the equipment.
- This equipment must only be commissioned, decommissioned, and maintained by authorized, certified trained personnel.
- The intended use of the equipment should only be for the purposes described in this manual and any misuse may result in damage to the equipment or unintentional safety hazards.
- This equipment must not be installed or operated in potentially explosive atmospheres (outside of Class 1 Div 2 zone).
- Ensure adequate clearance from obstructions (see <u>Equipment Placement and Mechanical</u> <u>Installation</u>).

- Ensure the Foundation is secure and adequate (see <u>Equipment Placement and Mechanical</u> <u>Installation</u>).
- All electrical panel doors are equipped with a lockable means and should be secured to prevent unauthorized access.
- If this product carries the certified mark by TUV Rheinland, any unauthorized part substitutions or modifications will void this certification.

# **Commissioning Checklist**

|   | HAZARD OF ELECTRICAL SHOCK OR BURN                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | <ul> <li>Ensure Earth ground is properly bonded prior to any<br/>contact with this equipment.</li> </ul>                                                                                                                                                                                                                                                                                                                  |  |  |
|   | <ul> <li>Only qualified personnel are allowed to install and<br/>commission this equipment.</li> </ul>                                                                                                                                                                                                                                                                                                                    |  |  |
| 4 | <ul> <li>Arc-Flash Hazard: Never take internal electrical<br/>measurements without proper PPE, including<br/>goggles, gloves, helmet, and arc-flash suit. When<br/>situations allow, avoid working with doors open<br/>and/or covers removed.</li> </ul>                                                                                                                                                                  |  |  |
|   | <ul> <li>Serious or fatal electrical shock may result from<br/>failure to isolate the incoming power from the drive<br/>electrical power source.</li> </ul>                                                                                                                                                                                                                                                               |  |  |
|   | <ul> <li>Always Lock-Out/Tag-Out (LOTO) all incoming<br/>power at the source/utility before opening the<br/>enclosure to create a safe work condition (per NFPA<br/>70E Article 120). Be aware there may be multiple<br/>power sources present. Verify the absence of<br/>voltage by wearing the proper safety equipment<br/>equivalent to Hazard Risk Category 2 garments and<br/>high-voltage safety gloves.</li> </ul> |  |  |
|   | <ul> <li>Allow at least 5 minutes for bus capacitors to<br/>discharge or until the voltage is less than 50V prior<br/>to opening the enclosure.</li> </ul>                                                                                                                                                                                                                                                                |  |  |
|   | <ul> <li>This equipment may contain SCADA or telemetry<br/>connections causing automatic starting. To prevent<br/>unexpected starts, always Lock-Out/Tag-Out<br/>(LOTO) equipment before servicing.</li> </ul>                                                                                                                                                                                                            |  |  |
|   | <ul> <li>Connected downhole motor may generate back-<br/>fed voltage. Once all drive incoming power is<br/>removed, isolate downhole motor power potential<br/>at the vented junction box prior to servicing.</li> </ul>                                                                                                                                                                                                  |  |  |

A detailed lock out tag out (LOTO) procedure can be found in the <u>Energy Isolation (LOTO)</u> <u>Document</u> under Wellsite Safety.

The sequence of steps below should be followed when first commissioning a drive.

- Steps involving VSD in LOTO state (lock out tag out)
  - Input wire size, quantity, routing, and securement (see <u>Power Wiring Requirements</u> & <u>Table 4</u>)

- Output wire size, quantity, routing, and securement (see <u>Power Wiring Requirements</u> & <u>Table 4</u>)
- Ground wire size, routing, and securement (see Power Wiring Requirements & Table 4)
- Control wires per site requirements.
- Check the torque on all power cable connections, any phase shift transformers, incoming power connections, output power connections, and step-up transformer connections.
- Check that CPTs are tapped for the expected input voltage range (380/427/480 V).
- Check the step-up transformer ratio is correct (dictates correct output voltage).
- Confirm the phase sequence wiring of any phase shift transformers for multi-pulse converter configurations is correctly sequenced.
- Initially leave drive's power output disconnected in preparation for ensuing verification tests.
- Check the torque on all power cable connections, (see <u>Table 8</u>), any phase shift transformers, incoming power connections, output power connections, and step-up transformer connections.
- Steps with drive powered up (ESP applications)
  - Confirm the drive input voltage level is correct (requires proper PPE).

|  | High Voltage Shock                        |
|--|-------------------------------------------|
|  | Death or serious bodily injury            |
|  | Operate per manufacturer's specification. |
|  | Ensure all required PPE is used.          |
|  |                                           |

- Confirm the phase sequence wiring of any phase shift transformers for multi-pulse converter configurations is correctly sequenced.
- Check the drive model on the nameplate and confirm it matches the model indicated on the HMI.
- Using nameplate ratings and the motor parameters, navigate to the Setup menu and program the parameters on the Drive Setup and Load Setup screens on the HMI.
- Navigate to the Faults & Alarms menu and program the overcurrent values, undercurrent values, overvoltage threshold, undervoltage threshold, input voltage unbalance threshold, and overload set point.
- With the drive's power output disconnected, perform a No-load test by starting and running the drive to ensure it reaches the set frequency (tests the converter section).

Note: Please ensure to enable the Volts per Hertz (V/Hz) feature before performing the No-Load test

- Shut down drive then perform LOTO in preparation for the following step.
- Connect the drive output to the step-up transformer and down-hole motor. Reference the FusionPro Troubleshooting manual (PN 500032468) for the detailed shorted-output test procedure.
- Ensure site is safe then remove LOTO.
- Power up the drive and start the downhole equipment. Note: FusionPro drive can generate output up to 140 Hz (6 Step option) or 200 Hz (SWF option). Before adjusting the output frequency, ensure downhole equipment is rated to operate at the specified frequency.
- While loaded monitor the drive output power currents and/or the output step-up transformer currents and discharge pressures to confirm correct motor rotation.
- Measure the drive's incoming power currents with a clamp on the meter to evaluate the percentage of drive load to the predicted values and assess the accuracy of the current sharing algorithms if any phase shift transformers are used.
- Measure the drive output power currents with a clamp on the meter and compare them to the displayed current data on the HMI (instrument measurement = HMI measurement +/-5%).
- The next two steps must be performed by certified trained personnel.
- Measure the step-up transformer output power currents with a clamp on the meter and use the drive output power currents (these should be equal to the step-up transformer input power currents); evaluate the actual step-up transformer ratio to the calculated/desired value.
- Measure the phase shift transformer input voltages, phase shift transformer output voltages, drive input voltages, drive output voltages, and step-up transformer input voltages to confirm minimal voltage drop under loaded conditions.
- Do not measure the step-up transformer's output voltages unless the proper equipment is available and medium voltage electrical system training has been completed.
- Evaluate the measured motor load to predicted values at the particular operating frequency.

| $\mathbf{\Lambda}$ |                                                                                                                                                                                                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Do not measure the step-up transformer's output<br>voltages and currents unless the proper equipment and<br>PPE are available and medium voltage electrical system<br>training has been completed.                                    |
| 4                  | <ul> <li>Monitor the drive output currents and/or the output<br/>step-up transformer currents and discharge<br/>pressures to confirm correct motor rotation.</li> </ul>                                                               |
|                    | <ul> <li>Measure the step-up transformer's input and output<br/>currents with a clamp-on meter to evaluate the<br/>actual step-up transformer ratio to the<br/>calculated/desired value.</li> </ul>                                   |
|                    | <ul> <li>Measure the step-up transformer output currents<br/>with a clamp-on meter and read the HMI's output<br/>currents to verify proper configuration and<br/>agreement of values.</li> </ul>                                      |
|                    | <ul> <li>Measure all the phase-shift transformer output<br/>voltages, drive input voltages, drive output voltages,<br/>and step-up transformer input voltages to confirm<br/>minimal voltage drop under loaded conditions.</li> </ul> |
|                    | <ul> <li>Evaluate the measured motor load to predicted values at a particular operating frequency.</li> <li>*** Note that measuring equipment may be inaccurate at frequencies outside of 50/60 Hz ***</li> </ul>                     |

#### Installation

# **Initial checks**

Before installing the FusionPro drive, check the unit for:

- Physical damage to drive and visual damage to the shipping container or cabinet.
- Remove all packing materials such as tape, foam, shipping restraints, and padding.
- Correct application. The drive nameplate data, transformers, and load must be compatible.
- Internal connections. Ensure all circuit boards, cables, components, and connectors are secure.

# **Equipment Placement and Mechanical Installation**

Surface equipment used in conjunction with Electric Submersible Pumps should be placed in accordance with American Petroleum Institute Recommended Procedure 11S3 (API RP11S3). To prevent exposure to explosive gasses and provide adequate access to equipment, the drive system (transformers, VSD, filters, etc.) should be placed at least 50 ft (15 m) from the wellhead. The main power service should be located no closer than 100 ft (30 m) from the wellhead and the drive should be placed at least 50 ft (15 m) from the wellhead and the drive should be placed at least 50 ft (15 m) from the wellhead.

Secure the drive to a surface that is structurally sound, flat, level, and non-flammable, (such as a concrete pad) through the mounting holes in the enclosure base using only mounting hardware designed for use with the pad material. See "Outline & Anchor Dimensional Diagrams" in the Appendix (Figure TBD) for recommended pad dimensions, critical drive dimensions, drive weights, wiring interfaces, etc. A minimum of 6 inches of space should be maintained on all four sides of the drive to allow sufficient cooling airflow across heat sinks and fan intakes as well as providing easy access for servicing and cable entry. Service access points for low-voltage electrical equipment require 1 meter (3 ft) minimum opening clearance, or as required per local ordinances.





#### **Electrical Power Installation**

# **Service Requirement**

FusionPro Drives are assessed as protective ground class 1 per IEC 61140 and overvoltage category 3 per IEC 60364-4-44 and IEC 60664-1. They are designed to be used in T-N networks (solidly grounded wye source, grounded neutral point). However, using phase-shift (multi-pulse) transformers typically makes it impractical to obtain a neutral point from the transformer secondary for service grounding purposes. Per NEC 250.21 and CEC 10-106(2), grounding is not required, but the transformer must be dedicated solely to powering the drive. Furthermore, ground detectors are required, and the system must be marked "Caution: Ungrounded System Operating – 480 Volts Between Conductors". If installing the drive on other grounded systems, contact your Baker Hughes representative for assistance.

Main service amperage requirements are based on drive kVA and motor load calculations. An appropriately sized service disconnect is required between the service source and the drive. Powering drives from pole-mounted 380/480V transformers is discouraged and requires appropriate transient suppression upstream from the drive's service entrance to ensure category-3 service compliance. If the equipment is installed in North America, it is necessary to perform an arc-flash study per NFPA 70E or CSA Z462 and label the equipment accordingly. To minimize arc-flash protection requirements calculated from the study, avoid oversizing the power rating of the system's service transformer. Furthermore, the short-circuit current rating for both the VSD 130-260kVA and VSD 325-520kVA FusionPro drives is 65 kA.

# **Grounding and Bonding Requirements**

Correct system grounding and equipment bonding are required to ensure the proper functioning of the equipment's protective circuits. Grounding and bonding conductors provide a path to ground for lethal fault currents and voltages. Failure to correctly ground and bond equipment can lead to equipment damage, personnel injury, or death.

Service wye point (when available) and enclosures, including the service disconnect switch, must be connected to a common ground conductor and grounding electrodes. Refer to the local electrical authority for approved grounding electrodes and methods for the installation site. System ground resistance ideally should be less than 5 Ohms to the ground and should not exceed 25 Ohms to the ground. Ground resistance checks should only be made by qualified electrical inspection agencies. A bonding conductor must be connected from the main grounding electrodes to all enclosures, junction boxes, buildings, electrical pipes, and the wellhead (see Figure 244). When powering loads, the "touch current" through the drive's protective earthing conductor will exceed 3.5 mA a.c.

FusionPro drives are equipped with a ground point inside the junction box for connecting bonding conductors (see Figure 255). It attaches to the internal ground bus of the enclosure. The bar includes a mechanical lug for wire ranging from 6 AWG to 250 MCM (16 to 185 mm2) along with 8 holes for other user connections. The recommended size for a single-wire bonding connection (per system kVA as deciphered from NEC 250.66) is listed in Table 4, along with the bonding wire size that is included with the recommended armor cable (that can also be used for system bonding).



Figure 25: Grounding the FusionPro Drive and Enclosure

# **Power Wiring Requirements**

Correct power wire selection, including ampacity, insulation dielectric strength, and insulation temperature are critical to the safe operation of the system. Furthermore, power wires must be protected from damage and unintended access using methods that meet NFPA 70 (NEC or equivalent) standards. Failure to follow installation guidelines can lead to equipment damage, personnel injury, or death.

FusionPro drives are powered with 3-phase voltage (typical, or up to 12-phase) ranging from 480V down to 380V. The rated output currents of the VSD 130-260kVA and the VSD 325-520kVA drives (see Table 7) indicate that significant wiring ampacity is required for installation. Details on this are indicated in Table 8 (Appendix). Furthermore, in extremely hot environments the air temperature inside the junction box can reach 70°C. Therefore, it is crucial to adhere to wiring requirements and follow component recommendations indicated in Table 8 (Appendix.). To maintain the ingress integrity of the enclosure, penetrations must be made with glands or techniques implementing NEMA-4 components. The bottom of the junction box is equipped with a removable ferrous gland plate for installing input and output wires/cables. To avoid unwanted eddy currents, a tri-symmetric 3-phase set (-120°, 0°, +120°) or comparable phase-shifted group variants should pass through each penetration (see Figure 266). Approximate gland plate dimensions and power-connection dimensions are indicated in the Outline and Anchor drawings for 2N4 (PN 500031777) and 4N4 (PN 500031977) in the Appendix.





Input and output connection points in the j-box are indicated in <u>Error! Reference source not</u> <u>found.</u> Input wires should be routed to the mechanical lugs on the bottom side of the molded case circuit breaker. Use extreme care to ensure that phases are not crossed (using color tape to mark phases is recommended). Route incoming wires such that they do not interfere with operating mechanisms. For VSD 130-260kVA and VSD 325-520kVA, the output wires are routed from mechanical lugs on the power distribution blocks on the right side of the J-box. Wire range for related lugs and recommended fastening torques are listed in <u>Table 8</u> (Appendix).



Figure 27: VSD 130-260kVA 6 Pulse J-Box



Figure 28: VSD 130-260kVA 12 Pulse J-Box



Figure 29: VSD 325/390kVA 6 Pulse J-Box



Figure 30: VSD 454/520kVA 6 Pulse J-Box



Figure 31: VSD 325 kVA 12 Pulse J-Box



Figure 32: VSD 390kVA 12 Pulse J-Box



Figure 33: VSD 454/520kVA 12 Pulse J-Box



Figure 34: VSD 325/390kVA 24 Pulse J-Box



Figure 35: VSD 454/520kVA 24 Pulse J-Box

Figure 366 represents wiring items detailed in <u>Table 8</u> (Appendix). These wiring components are recommended for safe and reliable FusionPro installations.



#### Figure 36: Power Wiring Components

See Control Circuit Installation for the installation of control wiring as needed per site requirements. Once all wires and cables have been installed it is recommended to perform the following verifications prior to customary drive operation.

- Check that the step-up transformer ratio is set as intended.
- Ensure that all debris and tools used for installation have been removed.
- Ensure that CPTs are tapped to correlate with incoming voltage.
- Verify that the site is safe prior to removing any LOTO.
- Confirm the correct voltage levels are present on the incoming power lines to the drive.

# **Control Circuit Installation**

|          | FusionPro Drives require input and produce output voltages that are lethal.                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Â        | Only authorized personnel shall perform electrical installation of this drive.                                                                                                 |
| <u> </u> | <ul> <li>All power sources must be isolated and wiring to<br/>and from the drive must be proven de-energized<br/>before installing this equipment. Always use LOTO.</li> </ul> |

| HAZARD OF ELECTRICAL SHOCK OR BURN                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Ensure Earth ground is properly bonded prior to any contact with this equipment.</li> <li>Only qualified personnel are allowed to open and sorvice this equipment.</li> </ul>                                                                                                                                                                                                                                    |
| <ul> <li>Arc-Flash Hazard: Never take internal electrical<br/>measurements without proper PPE, including<br/>goggles, gloves, helmet, and arc-flash suit. When<br/>situations allow, avoid working with doors open<br/>and/or covers removed</li> </ul>                                                                                                                                                                   |
| <ul> <li>Serious or fatal electrical shock may result from<br/>failure to isolate the incoming power from the drive<br/>electrical power source.</li> </ul>                                                                                                                                                                                                                                                               |
| <ul> <li>Always Lock-Out/Tag-Out (LOTO) all incoming<br/>power at the source/utility before opening the<br/>enclosure to create a safe work condition (per NFPA<br/>70E Article 120). Be aware there may be multiple<br/>power sources present. Verify the absence of<br/>voltage by wearing the proper safety equipment<br/>equivalent to Hazard Risk Category 2 garments and<br/>high-voltage safety aloves.</li> </ul> |
| <ul> <li>Allow at least 5 minutes for bus capacitors to<br/>discharge or until the voltage is less than 50V prior<br/>to opening the enclosure.</li> </ul>                                                                                                                                                                                                                                                                |
| <ul> <li>This equipment may contain SCADA or telemetry<br/>connections causing automatic starting. To prevent<br/>unexpected starts, always Lock-Out/Tag-Out<br/>(LOTO) equipment before servicing.</li> </ul>                                                                                                                                                                                                            |
| <ul> <li>Connected downhole motor may generate back-<br/>fed voltage. Once all drive incoming power is<br/>removed, isolate downhole motor power potential<br/>at the vented junction box prior to servicing.</li> </ul>                                                                                                                                                                                                  |

FusionPro VSDs can be supplied with the following provisions:

- Optional CPT Power for auxiliary equipment requiring  $115V_{\alpha c}$  (275 VA)
- Optional Arctic heater to ensure operation at lower temperatures.
- Optional dehumidifier that warms enclosure air to avoid moisture wicking from heat cycling.
- Optional Surface unit to interface with Zenith down-hole sensors
- Control logic for auxiliary equipment.
  - 24V<sub>dc</sub> power supply (external 2-amp load capacity)
  - Moxa E1242 I/O module
- 4 analog input channels
- 4 digital input channels
- 4 digital output channels
  - Connected to 4 dry-contact relays (250V/6A max)
- FusionPro System Controller
  - Enhanced setup and motor control
  - Data storage and diagnostics
  - Integrated system control via Moxa I/O modules
  - Communications interfaces for configuring, monitoring, and SCADA.
- Other standard options
  - Additional Moxa I/O modules. See the MOXA information section.
  - Emergency stop. The FusionPro drive may contain an optional red Emergency Stop (E-stop) mushroom switch on the front door of the drive. When pressed, the E-stop initiates a category 0 Safe Torque Off (STO) command immediately removing power from the converter and inverter control sections of the drive. The drive cannot be started until the E-stop button is disengaged (unlatched). The E-stop input complies with the requirements for IEC 61508 SIL2, IEC 62061 SILCL 2, and EN ISO 13849-1 CAT 3. For the SIL2 E-stop circuit, see Figure 61.
  - Enhanced power monitoring with additional line current transformers. For applications where additional input power information is desired, see <u>Figure 61</u> in the Appendix section.
- Sine wave filter (SWF) option. See <u>Appendix E</u>: Sine-Wave Filter (SWF) PWM Operation.

### **Control Panel Circuits Available for Customer Use**

The FusionPro VSD has an internal panel on the left side with circuits for customer use as follows:

- A. Optional: 115V/275VA (output) transformer
- B. Optional: Zenith down-hole sensor (surface unit)
- C. Moxa I/O with 24Vdc/2A power source



A general-purpose ground bar (14 ~ 4 AWG) is located at the lower back side of the panel. A "surface" PCBA is ready to interface with a Zenith down-hole sensor. The drive's system control interface allows its HMI to monitor and control external devices for enhanced motor-system control. See <u>Internal Mounting of MOXA Modules</u> for detailed information on this specialized I/O equipment.

Note that terminal blocks are Wago 2202 series with cage clamps for stranded wire from 18 to 14 AWG (1 ~ 2.5 mm<sup>2</sup>). It is recommended to use ferrules such as Pan-Term® FSD77-10-D when terminating stranded wires.



### 115V/275VA (Output) Transformer (CPT2)

The FusionPro VSD is optionally equipped with a 275 VA transformer (CPT2) dedicated for customer use (see Detail "A" of Figure 377). If equipped with "CPT2", a 275VA load (2.4 A max) such as a work light, laptop PC, or small motor can be attached at TB9/TB10. Its input has two 2.8A fuses, time-delay, and Class CC (FU8~9, C901911, Bussmann FNQ-R-2 8/10). Its output is protected with a 4A, time-delay, AG-style fuse (FU10, C55535, Bussmann MDL-4). Connections are made at TB9 (hot) and TB10 (neutral). If a ground connection is needed, use the general-purpose ground bar.

### Zenith Down-Hole Sensor (Surface Unit)

Typical option: The Mark-2 Interface Card (ZPN 34460821000) is for interfacing with a Zenith down-hole sensor (see Detail "B" of Figure 377). It is powered by the drive's internal  $24V_{dc}$  power and interfaces with the HMI's ethernet port in a daisy-chain connection with the Moxa I/O module. It is necessary to add a shielded cable (18 AWG) from the surface choke of the down-hole sensor. Avoid routing this cable near power wires and attach it at J11 (Pin-1 = +VE & Pin-2 = -VE).

### Moxa I/O (with 24VDC/2A Power Source)

The FusionPro VSD is equipped with a 24 Vdc power supply (PS2) and Moxa E1242 module (IOM1, see Detail "C" of Figure 377). PS2 is protected with a 4A, time-delay, 5X20mm fuse (FU20, C48109, Bussmann GDC-4). Note that Moxa digital outputs (pins 16~19) have been buffered with dry-contact relays (RLY21~24, 250V/6A). This provides isolation and increases voltage and current capacity. All Moxa input and output functions are managed through the FusionPro System Controller. Reference this manual for related setup details.



Figure 37: Control Panel (rotated 90° counterclockwise)

### **FusionPro System Controller**

The FusionPro System Controller is the controller that integrates drive and system operation at the site. Its critical functions are as follows:

- Configure motor parameters.
  - Rated voltage, current, torque, RPM, motor control method, etc.
- Configure system parameters.
  - Step-up transformer ratio and impedance, motor cable size/type and length, skipfrequencies, define additional I/O and behavior, etc.
- Monitor and control motor performance.
  - Optimize running conditions, react to underload and overload conditions, etc.
- Monitor and control system behavior.
  - Compensate for impedances, transformer ratios, etc.
  - React accordingly to additional I/O conditions, etc.
- Communicate with local network devices.
  - Advantage power module, Moxa, ZIU, and other compatible Modbus devices.
- Communicate with external network devices.
  - RS-232 SCADA (Modbus Serial)

- RS-485 SCADA (Modbus Serial)
- Ethernet SCADA (Modbus TCP)

Figure 388 shows the carrier interface board and single-board computer (TS-7970) that make up the FusionPro drive's Human-Machine Interface (not shown: Liquid Crystal Display and membrane keypad). End-user connection points are as follows:

- Jla/b USB "host" port internally accessed with an A-type connector on the SBC.
- J2a/b USB "host" port accessed with an A-type connector on the cabinet door.
  - File transfer (data and configurations to and from the HMI using a thumb drive)
- T1 Shielded RJ45 jack for connection with a Gigabit Ethernet port
  - Remote User Interface, SCADA, and file transfer
- Pla/b Serial ports (see Figure 399)
  - RS-485 COM5 Pla (pin2 = 485+, pin3 = 485-)
    - Modbus RTU (/dev/ttyMAX1 -> ttymxc1)
  - RS-232 COM4 Plb (pin1 = com, pin7 = TX, pin8 = RX)
    - Modbus RTU (/dev/ttymxc4)
  - RS-232 COM3 (DB9, pin2 = RX, pin3 = TX, pin5 = GND



Figure 38: FusionPro Drive HMI PCB Assembly (Carrier Interface Board and Single-Board Computer)



#### Figure 39: Dual Connector Pinout at P1-A and P1-B

Note that other communication connections are possible with adapters. Reference the FusionPro System Controller manual (PN 500031487) for expanded communication options. Installation of alternate down-hole sensors and other Modbus devices may be possible. Consult with your regional service center for assistance.

When installing communications cables within the cabinet avoid routing near power wires to prevent EMI exposure and ensure dielectric isolation. If communications wiring must cross circuits energized with more than 60V, tubing with 600V-class must be used to double-insulate the communications cable.

Note that any wiring penetrating the drive enclosure must maintain NEMA-4 integrity. Water-tight cable glands with sealing washers should be used to prevent water, dust, and vermin from entering the enclosure. Place holes on bottom-facing surfaces or as low as practical. Protection of wiring outside of the enclosure must also be responsibly managed.



### **Control Power Transformer Tap Selection**

FusionPro drives can be operated with input voltage from 480V down to 380V (plus tolerance), noting that power and output voltage capacity are directly affected by such variations. The drive's Control Power Transformers are tapped at 480V by default. When operating at lower voltages, the tap settings of CPTI and CPT2 should be modified accordingly. <u>Table 1</u> indicates tap settings for given line-voltage ranges, along with resultant CPT outputs. <u>Figure 4040</u> shows the basic layout of the CPTs and the screw terminals where the wire should be placed for a given input range. Note that the wire at H1 should not be moved.

| ТАР       | Line Input Range |       | CPT Output Range |       |  |
|-----------|------------------|-------|------------------|-------|--|
|           | Upper            | Lower | Upper            | Lower |  |
| H4 (480V) | 504V             | 449V  | 121V             | 108V  |  |
| H3 (427V) | 448V             | 400V  | 121V             | 108V  |  |
| H2 (380V) | 399V             | 360V  | 121V             | 109V  |  |

#### **Table 1: CPT Tap Selection**



Figure 40: CPT Tap Terminals (CPT1 shown)

See <u>Power Wiring Requirements</u> for installation of power wiring as needed per site requirements. Once all wires and cables have been installed it is recommended to perform the following verifications prior to customary drive operation.

- Ensure field-installed low-voltage wiring is properly isolated from high-voltage wiring.
- Check that the step-up transformer ratio is set as intended.
- Ensure that all debris and tools used for installation have been removed.
- Ensure that CPTs are tapped to correlate with incoming voltage.
- Ensure any removed protective covers have been reinstalled.
- Verify site is safe prior to removing any LOTO.
- Confirm the correct voltage levels are present on the incoming power lines to the drive.

### Moxa Installation

### Internal Mounting of MOXA Modules

| HAZARD OF ELECTRICAL SHOCK OR BURN                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Ensure Earth ground is properly bonded prior to any<br/>contact with this equipment.</li> </ul>                                                                                                                                                                                                                                                                                  |
| <ul> <li>Only qualified personnel are allowed to open and<br/>service this equipment.</li> </ul>                                                                                                                                                                                                                                                                                          |
| <ul> <li>Arc-Flash Hazard: Never take internal electrical<br/>measurements without proper PPE, including<br/>goggles, gloves, helmet, and arc-flash suit. When<br/>situations allow, avoid working with doors open<br/>and/or covers removed.</li> </ul>                                                                                                                                  |
| <br><ul> <li>Serious or fatal electrical shock may result from<br/>failure to isolate the incoming power from the drive<br/>electrical power source.</li> </ul>                                                                                                                                                                                                                           |
| <ul> <li>Always Lock-Out/Tag-Out (LOTO) all incoming<br/>power at the source/utility before opening the<br/>enclosure to create a safe work condition (per NFPA<br/>70E Article 120). Be aware there may be multiple<br/>power sources present. Verify the absence of<br/>voltage by wearing the proper safety equipment<br/>equivalent to Hazard Risk Category 2 agreents and</li> </ul> |
| high-voltage safety gloves.                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Allow at least 5 minutes for bus capacitors to<br/>discharge or until the voltage is less than 50V prior<br/>to opening the enclosure.</li> </ul>                                                                                                                                                                                                                                |
| <ul> <li>This equipment may contain SCADA or telemetry<br/>connections causing automatic starting. To prevent<br/>unexpected starts, always Lock-Out/Tag-Out<br/>(LOTO) equipment before servicing.</li> </ul>                                                                                                                                                                            |
| • Connected downhole motor may generate back-<br>fed voltage. Once all drive incoming power is<br>removed, isolate downhole motor power potential<br>at the vented junction box prior to servicing.                                                                                                                                                                                       |

The FusionPro VSD is equipped with an internal panel for customer options. It is located on the left inside of the cabinet. The standard El242-T module and customer 24Vdc terminal block are located on the upper forward DIN rail. Other I/O modules and/or terminal blocks can be added to the "ZIU" DIN rail as needed for specific applications. Ensure that supplemental wiring is routed in an orderly fashion and meets insulation requirements. For further details see the section discussing <u>Control Circuit Installation</u>. In addition to powering added MOXA modules, unused bus terminals on TB23-A~D (24V-) and TB24-A~D (24V+) can be used for powering accessories such as transducers and "wet contact" I/O modules. Room for additional components will vary depending on whether other options exist. Installation of MOXA modules outside the cabinet should also be possible but has not been thoroughly evaluated.



Figure 41: 24 VDC Controls (Including E1242-T MOXA) at VSD Customer Interface Panel (Rotated 90° Counterclockwise)

### I/O Wiring

Moxa I/O terminal connections can accept 26 to 16 AWG wires (0.14 to 1.5 mm<sup>2</sup>). However, 18 AWG (0.75 mm<sup>2</sup>) is the recommended size. All wires should have at least 300V class, 90°C insulation. Note that wire routed with circuits greater than 300 Vac shall have 600V class insulation or 600V supplemental sleeving. Dielectric sleeving should be used with any wires or cables that have insufficient insulation with respect to voltage class. This particularly concerns installed wires that are routed adjacent to wiring for 600V class circuits (even if appropriately insulated). Many communication cables are considered as 30V class, so sleeving is typically necessary. Furthermore, insulation shall also be evaluated and certified for flammability (typically marked VW-1 or better). Pin 14 (GND) of the Moxa E1242 is the common return path for DI0, DI1, DI2, and DI3. Depending on the length of the cable and the total amount of impedance in the path, an external 10-30VDC external power supply may be required to help switch the DI state. In these cases, the power supply should be added to Pin 9 (+) and Pin 14 (-).

### **MOXA Information**

The FusionPro VSD comes equipped with a Moxa E1242-T industrial Ethernet remote I/O module. It can be connected to digital and/or analog devices as needed for enhanced system control. It has extended temperature range (-40 to 75°C) to ensure reliability and resilience in most any field application. The drive also implements a customer-dedicated 24 Vdc power supply capable of powering cumulative loads up to 3.7 A (with thermal de-rate) for items such as installed modules, transducers, and other related I/O circuits. It is recommended to limit additional loads to 2.0 A to avoid overloading the power supply especially if the typical external ambient temperature is above 45°C. Other supported modules can be added as listed in Table 2. For module "programming" information reference the FusionPro System Controller Manual. Further details can be found in schematic 5000xxxx (Figure TBD) and at Moxa's website (www.moxa.com/product).

| вн #       | MOXA<br># | FUNCTIONALITY | Function Ratings/Limits                             |
|------------|-----------|---------------|-----------------------------------------------------|
|            |           | 4 Als;        | 0 to 10 Vdc; 0/4~20 mA w/ 120 ohm resistor built    |
| 5000006377 | E1242-T   | 4 DIs;        | in Wet-On: 10~30 Vdc, Wet-Off: 0~3 Vdc, Count:      |
|            |           | 4 DOs         | 250 Hz max;200 mA, Sink, Pulse: 500 Hz max          |
| 5000006378 | E1241-T   | 4 AOs         | I(short-circuit) > 10 mA, 400 ohm resistor built in |
| 500006270  | E1240_T   | 9 410         | 0 to 10 Vdc; 0/4~20 mA w/ 120 ohm resistor built    |
| 5000000379 | E1240-1   | 0 AIS         | in                                                  |
|            |           |               | 2- or 3- wire, 625 k-ohm input impedance,           |
| 5000006381 | E1260-T   | 6 RTDs        | PT1000 (-200 to 350°C),                             |
|            |           |               | PT50, PT100, PT200, PT500 (-200 to 850°C)           |

#### Table 2: Supported Moxa Modules

| NOTICEMOXA modules have been tested and found to comply<br>with the limits for a Class A digital device, pursuant to part<br>15 of the FCC Rules. Operation is subject to the following<br>two conditions: (1) This device may not cause harmful<br>interference, and (2) this device must accept any<br>interference received, including interference that may<br>cause undesired operation.NOTICEThese limits are designed to provide reasonable protection<br>against harmful interference when the equipment is<br>operated in a commercial environment. This equipment<br>generates, uses, and can radiate radio frequency energy |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| NOTICE | Moxa units are sensitive to Electrostatic Discharge which<br>can cause internal damage and affect normal operation.<br>Follow these guidelines when you handle unit(s): |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        | <ul> <li>Before handling the product, touch a grounded<br/>object to discharge static electricity from your</li> </ul>                                                  |  |  |  |
|        | body.                                                                                                                                                                   |  |  |  |
|        | <ul> <li>Wear an approved grounding wristband.</li> </ul>                                                                                                               |  |  |  |
|        | <ul> <li>Do not touch connectors or pins on component<br/>boards.</li> </ul>                                                                                            |  |  |  |
|        | <ul> <li>Do not touch circuit components inside the<br/>equipment.</li> </ul>                                                                                           |  |  |  |
|        | Use a static-safe workstation, if available.                                                                                                                            |  |  |  |
|        | <ul> <li>Store the equipment in appropriate static-safe</li> </ul>                                                                                                      |  |  |  |
|        | packaging when not in use.                                                                                                                                              |  |  |  |



# Figure 42: Moxa Profiles and Physical Dimensions (Characteristics of I/O channel connectors vary per module type)

| Features                      |        | Ethe | ernet Po       | rt   |   |
|-------------------------------|--------|------|----------------|------|---|
|                               | Pin    | 1    | 2              | 3    | 4 |
| Dual Ethernet<br>Switch Ports | signai | TXD+ | TXD-           | RXD+ |   |
| → 12-24 VDC Power             | Pin    | 5    | 6              | 7    | 8 |
|                               | Signal |      | RXD-           |      |   |
| RESET Button<br>Stress Relief |        |      | PIN 1<br>PIN 8 |      |   |

### Figure 43: Other Moxa Module Details

**Note:** The RESET button restarts the server and resets all settings to factory defaults. Use a pointed object such as a straightened paper clip to hold down the RESET button for 5 seconds. The factory defaults will be loaded once the READY LED turns green again. You may then release the RESET button.

| LED    | State    | Description                                          |
|--------|----------|------------------------------------------------------|
| Power  | Amber    | System power is ON                                   |
|        | OFF      | System power is OFF                                  |
| Ready  | Green    | System is ready                                      |
|        | Flashing | Flashes every 1 second when the "Locate" function is |
|        |          | triggered                                            |
|        | Flashing | Flashes every 0.5 seconds when the firmware is       |
|        |          | being upgraded                                       |
|        | Flashing | ON/OFF cycle period of 0.5 seconds represents "Safe  |
|        |          | Mode"                                                |
|        | OFF      | System is not ready                                  |
| Port 1 | Green    | Ethernet connection enabled                          |
|        | Flashing | Transmitting or receiving data                       |
| Port 2 | Green    | Ethernet connection enabled                          |
|        | Flashing | Transmitting or receiving data                       |
| EXT    | Green    | EXT field power input is connected                   |
|        | Off      | EXT field power input is disconnected                |

| TUDIE J. WORD JYSIEITI LED ITUICULUIS |
|---------------------------------------|
|---------------------------------------|



#### Figure 44: Moxa DIN-Rail Module Mounting

| NOTICE | Factory-installed modules are connected with a shielded<br>ethernet cable that is grounded at the HMI so it is typically<br>unnecessary (and undesirable) to use the module's<br>ground connection. However, if additional modules are<br>added and an unshielded ethernet cable is used, the<br>module should be connected to a ground point in the VSD<br>with 16 AWG (1.5 mm <sup>2</sup> ) wire. |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



Figure 45: Moxa Chassis Grounding



Terminal connections can accept 24 to 12 AWG wire (0.25~4.0 mm<sup>2</sup>). However, 16 AWG (1.5 mm<sup>2</sup>) is the recommended size, ensuring minimal source power attenuation. See the section pertaining to I/O Wiring for matters related to

insulation selection.

Figure 46: Power Wiring for Moxa Modules

### I/O Channel Jumper Setting

For additional analog modules (E1240-T or E1242-T) it is necessary to configure whether voltage or current is being measured. The Analog Input (AI) jumpers on the E1240-T and E1242-T need to be changed from Voltage Mode to Current Mode. For additional digital modules (E1242-T) it is necessary to configure the direction such that the channel detects input status or controls output status. This is done by setting internal jumpers. Jumper configuration of the following modules is not necessary: E1240-T, E1241-T, nor E1260-T.

To access configuration jumpers, open the unit as follows.



#### Figure 47: Moxa Configuration Jumper Access

Position jumper for desired functionality as follows.

| DIO Direction (DI, DO)          |         | Al Mode (Voltage, Current)           |              |  |
|---------------------------------|---------|--------------------------------------|--------------|--|
| The default setting is DO Mode. |         | The default setting is Voltage Mode. |              |  |
| DI Mode                         | DO Mode | Voltage Mode                         | Current Mode |  |
|                                 |         |                                      |              |  |



### **Down-hole Sensor Installation**

Downhole (DH) sensors are used with ESP systems to acquire related temperatures and pressures, along with cable integrity and motor vibration details.



Figure 49 shows the black-box circuit for a typical ESP system with a FusionPro VSD. The drive comes equipped and preconfigured with a surface interface board (Figure 50 for use with Zenith down-hole sensors. Installation details for the down-hole sensor and surface choke can be found in Baker Hughes document number OPS-GLB-En-108688. A shielded 18 AWG cable is recommended to connect J11 of the surface interface board to the surface choke (see Figure 51). The internal wires of the cable must be rated 150 V minimum with a 600V jacket (preferred). If the jacket has a lower voltage class, then it is necessary to sleeve with a 600V tubing any cable sections that contact 600V-class wires or circuits. When penetrating the cabinet NEMA-4 rated glands shall be used to maintain enclosure integrity. It is also a good practice to avoid running the cable near power wires to avoid electrical noise caused by crosstalk. It is also recommended to place cabling outside of the cabinet in conduit or armored cable to avoid damage.



#### Figure 49: Typical ESP Down-hole Sensor Circuit



Figure 50: Zenith Surface PCBA



Figure 51: Recommended Cabling Options for Connection from PCBA to Choke

### Appendix

### **Appendix A: Drive Specifications and Ratings**

### **Specifications**

| Ratings                |                                                                           |
|------------------------|---------------------------------------------------------------------------|
| Input Voltage          |                                                                           |
| Magnitude<br>(typical) | 380 to 480 VAC (360 VRMS minimum & 504 VRMS maximum, see<br>Table 5)      |
| Phase (typical)        | Need to account for all input configurations (6P, 12P, & 24P).            |
| Frequency              | 50/60 Hz +/- 2 Hz (stable governing of speed is essential for generators) |

| Ratings                     |                                                                                                                                        |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Input and Output<br>Current | See Appendix A <u>Table 8</u>                                                                                                          |  |
| Output Voltage              |                                                                                                                                        |  |
| Magnitude                   | 40 to 480 VAC (at maximum speed, limited by input voltage magnitude)                                                                   |  |
| Frequency                   | 10 to 140 Hz for ESP operation and 10 to 200 Hz for SWF PWM operation (low and high-speed range, +/- 0.1 Hz resolution in V/f control) |  |
| Environment                 |                                                                                                                                        |  |
| Storage<br>Temperature      | -40°C to 70°C (-58°F to 158°F)                                                                                                         |  |
| Operating<br>Temperature    | -40°C to 55°C (-40°F to 131°F)                                                                                                         |  |
| Construction                | NEMA-4 (IP56)                                                                                                                          |  |
| Humidity                    | 95% non-condensing; suitable for use outdoors                                                                                          |  |
| Elevation                   | Sea level to 5000 ft (1524 m) without derate                                                                                           |  |
| Classification Area         | Non-hazardous                                                                                                                          |  |
| Weight and<br>Dimensions    | See Appendix D: Dimensions and Approximate Weights                                                                                     |  |

### Nameplate

| ART#:<br>NERIAL#:<br>NCL_TYPE:<br>2001 | , IP<br>FACTORY: | kVA:<br>DWG#:<br>WEIGHT:<br>MEG DATE: |       |  |
|----------------------------------------|------------------|---------------------------------------|-------|--|
| NPUT:                                  | VAC              | Hz                                    | PHASE |  |
| BECR:<br>DUTPUT:                       | KA<br>VAC        | Hz                                    | PHASE |  |

- 1. VSD Nameplate with general product information
- 2. VSD physical properties
- 3. VSD electrical ratings

| Output Voltage               |                                                                      |
|------------------------------|----------------------------------------------------------------------|
| Magnitude Range              | 40 to 480 VAC (at maximum speed, limited by input voltage magnitude) |
| Voltage Magnitude Clamp      | 100 to 550 VAC (setting value)                                       |
| Voltage Magnitude Boost      | 0 to 200 VAC                                                         |
| Voltage Boost Sync           | 0 to 200 VAC                                                         |
| Frequency Range              | 10 to 140 Hz (low-speed and high-speed range, +/- 0.1 Hz resolution) |
| Start Frequency              | 3 to 20 Hz                                                           |
| Sync Delay Time              | 0 to 60 seconds                                                      |
| Low Speed Clamp              | 10 to 140 Hz                                                         |
| High Speed Clamp             | 6 Step ESP (10 to 140 Hz) and SWF (10 to 200 Hz)                     |
| Output Current               |                                                                      |
| Instantaneous Over Current   | 170% of full load rating                                             |
| Current Limit                | 0 to 150% of Variable Speed Control (VSC) rating                     |
| Current Limit Sync           | 0 to 150% of VSC rating                                              |
| Maximum Overload Current     | 0 to 150% of VSC rating                                              |
| <b>Power Characteristics</b> |                                                                      |
| Efficiency                   | > 98% at rated load                                                  |
| Power Factor                 | 0.96 at full load                                                    |
| Input Protection/Disconnect  | Circuit breakers with electronic trip                                |
| Surge Protection             | Metal oxide varistors (line-to-ground)                               |
| Rectifier Type               | SCR frontend with DC link reactors (for harmonic mitigation)         |
| Inverter Type                | IGBT 3-Phase, 2 Level                                                |

### Table 4:Specifications (Particular to Application)

#### **Table 5: Control Features**

| Motor Control       |                                                     |
|---------------------|-----------------------------------------------------|
| Application         | Electric submersible pump or horizontal pump system |
| Motor Type          | Induction or permanent magnet                       |
|                     | Manual setpoint                                     |
|                     | Current control                                     |
| Francisco e Control | PID defined by user.                                |
| Frequency Control   | PID + current control                               |
|                     | Analog follower                                     |
|                     | Hz to PID on the fly                                |
| ESP Custom Software | MaxRate™ GasPrime                                   |

| Motor Control                                       |                                                                                                                                                            |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | MaxStart™                                                                                                                                                  |
|                                                     | Back-spin detection                                                                                                                                        |
| Motor Protection                                    | Overload I <sup>2</sup> t protection (with auto frequency adjustment)<br>Underload;<br>Overtemperature protection available with Zenith sensor -<br>option |
| Motor Speed Control                                 | Scalar Volts/Hz<br>Baker Hughes Vector Control                                                                                                             |
| Down-hole Sensor                                    | Zenith interface board option (sensor-driven alarms)                                                                                                       |
| Acceleration Time                                   | 2 to 200 seconds                                                                                                                                           |
| Deceleration Time                                   | 2 to 200 seconds                                                                                                                                           |
| Emergency STOP                                      | STO (Safe Torque Off) Cat 0 (J28 Pin 1 to 3 & J30 pin 1 to 3)                                                                                              |
| System Control                                      |                                                                                                                                                            |
| Controller                                          | FusionPro System Controller™ System Controller                                                                                                             |
| Data Logging                                        | Records for: events, shutdowns, and continuous operating data                                                                                              |
|                                                     | Protocol: Modbus RTU, Modbus TCP/IP                                                                                                                        |
| Communications                                      | Ports: 1-RS232, 1-RS485, and 1-Ethernet                                                                                                                    |
|                                                     | Wi-Fi: Included                                                                                                                                            |
| Standard External I/O<br>(Included Moxa module, MX1 | Analog inputs: (4X) 0/4~20 mA (default, configurable to 0-10 VDC)                                                                                          |
| = E-1242, up to 4 others can                        | Analog outputs: (0X) None (optional as additional module)                                                                                                  |
| be added)                                           | Digital inputs: (4X) Wet-On, 10~30 VDC, Wet-Off: 0~3 VDC,<br>Count: 250 Hz                                                                                 |
|                                                     | Digital outputs: (4X) Dry-contact relays, 6A @ 240V (derived from MX1)                                                                                     |
| Supported Moxa Modules                              | Е1242-Т, Е1241-Т, Е1240-Т, Е1260-Т                                                                                                                         |
| DC Control Power                                    | PS2, 24 VDC @ 2 A, external access per TB23 (-) and TB24 (+)                                                                                               |
| AC Control Power                                    | CPT2, 115 VAC @ 2.4 A, external access per TB9 (hot) and TB10 (neutral)                                                                                    |

### Appendix B: Model Designation and Variable Torque VSD Ratings

### **Model Designation:**

| VSD 0130-0260kVA ESP | VSD 0325-0520kVA ESP |
|----------------------|----------------------|
| VSD 0130K-04FP06ESP  | VSD 0325K-04FP06ESP  |
| VSD 0200K-04FP06ESP  | VSD 0390K-04FP06ESP  |
| VSD 0260K-04FP06ESP  | VSD 0454K-04FP06ESP  |
| VSD 0130K-04FP12ESP  | VSD 0520K-04FP06ESP  |
| VSD 0200K-04FP12ESP  | VSD 0325K-04FP12ESP  |
| VSD 0260K-04FP12ESP  | VSD 0390K-04FP12ESP  |
| VSD 0130-0260kVA SWF | VSD 0454K-04FP12ESP  |
| VSD 0200K-04FP06SWF  | VSD 0520K-04FP12ESP  |
| VSD 0200K-04FP06SWF  | VSD 0325K-04FP24ESP  |
| VSD 0260K-04FP06SWF  | VSD 0390K-04FP24ESP  |
| VSD 0130K-04FP12SWF  | VSD 0454K-04FP24ESP  |
| VSD 0200K-04FP12SWF  | VSD 0520K-04FP24ESP  |
| VSD 0260K-04FP12SWF  |                      |
| VSD 0325-0520kVA SWF |                      |
| VSD 0325K-04FP06SWF  |                      |
| VSD 0390K-04FP06SWF  |                      |
| VSD 0454K-04FP06SWF  |                      |
| VSD 0520K-04FP06SWF  |                      |
| VSD 0325K-04FP12SWF  |                      |
| VSD 0390K-04FP12SWF  |                      |
| VSD 0454K-04FP12SWF  |                      |
| VSD 0520K-04FP12SWF  |                      |
| VSD 0325K-04FP24SWF  |                      |
| VSD 0390K-04FP24SWF  |                      |
| VSD 0454K-04FP24SWF  |                      |
| VSD 0520K-04FP24SWF  |                      |

#### **Rated Voltage:**

3phase AC 380/480V, 50-60Hz

#### **Rated Input Current:**

|                     | VSD   | 0130-026 | ОК    | VSD 0325-0520K |       |       |       |  |
|---------------------|-------|----------|-------|----------------|-------|-------|-------|--|
| Model               | 0130K | 0200K    | 0260K | 0325K          | 0390K | 0454K | 0520K |  |
| Input Current (6P)  | 164   | 253      | 329   | 411            | 492   | 573   | 655   |  |
| Input Current (12P) | 82    | 127      | 165   | 206            | 246   | 287   | 328   |  |
| Input Current (24P) | _     | _        | _     | 103            | 123   | 143   | 164   |  |

Output Ratings: 480Vmax, 10-140Hz.

### Table 6: Output kVA at 380/480V at 50/60 Hz

| Model (kVA) | 380V | 480V |  |  |
|-------------|------|------|--|--|
| 0130        | 103  | 130  |  |  |
| 0200        | 159  | 200  |  |  |
| 0260        | 206  | 260  |  |  |
| 0325        | 257  | 325  |  |  |
| 0390        | 308  | 390  |  |  |
| 0454        | 359  | 454  |  |  |
| 0520        | 411  | 520  |  |  |

**NOTE:** When applying variable speed drives to constant torque loads, the continuous output current and output KVA are de-rated by 20%. The overload and start currents remain the same.

#### **Table 7: Variable Torque Current and Power Ratings**

|                | Input Ratings<br>(Amps) |                       |                                   |       |                              |         |
|----------------|-------------------------|-----------------------|-----------------------------------|-------|------------------------------|---------|
|                |                         | Continuous<br>Current | Overload Start<br>Current Current |       | -                            | -       |
| KVA<br>380/480 | Model                   | RMS Amps              |                                   |       | Circuit<br>Breaker           | Input   |
|                |                         |                       | 60 Sec                            | 7 Sec | Frame<br>Rating <sup>2</sup> | Current |
| 102/120        | VSD 0130K-04FP06ESP     | 156                   | 187                               | 234   | 250                          | 164     |
| 103/130        | VSD 0130K-04FP06SWF     | 166                   | 199                               | 250   | 250                          | 164     |
| 100/100        | VSD 0130K-04FP12ESP     | 156                   | 187                               | 234   | 2x250                        | 2x82    |
| 103/130        | VSD 0130K-04FP12SWF     | 166                   | 199                               | 250   | 2x250                        | 2x82    |
| 150/000        | VSD 0200K-04FP06ESP     | 241                   | 289                               | 362   | 400                          | 253     |
| 159/200        | VSD 0200K-04FP06SWF     | 257                   | 308                               | 386   | 400                          | 253     |

|         | VSD 0260K-04FP06ESP | 313 | 376 | 470 | 400   | 329   |
|---------|---------------------|-----|-----|-----|-------|-------|
| 206/260 | VSD 0260K-04FP06SWF | 334 | 401 | 501 | 400   | 329   |
| 150/000 | VSD 0200K-04FP12ESP | 241 | 289 | 362 | 2x250 | 2x127 |
| 159/200 | VSD 0200K-04FP12SWF | 257 | 308 | 386 | 2x250 | 2x127 |
| 000/000 | VSD 0260K-04FP12ESP | 313 | 376 | 470 | 2x250 | 2x165 |
| 206/260 | VSD 0260K-04FP12SWF | 334 | 401 | 501 | 2x250 | 2x165 |
| 053/005 | VSD 0325K-04FP06ESP | 391 | 469 | 587 | 600   | 411   |
| 25/ 325 | VSD 0325K-04FP06SWF | 417 | 500 | 626 | 600   | 411   |
| 200/200 | VSD 0390K-04FP06ESP | 469 | 563 | 704 | 600   | 492   |
| 308/390 | VSD 0390K-04FP06SWF | 500 | 601 | 751 | 600   | 492   |
| 250/454 | VSD 0454K-04FP06ESP | 546 | 655 | 819 | 800   | 573   |
| 359/454 | VSD 0454K-04FP06SWF | 582 | 699 | 874 | 800   | 573   |
| 411/500 | VSD 0520K-04FP06ESP | 624 | 749 | 936 | 800   | 655   |
| 411/520 | VSD 0520K-04FP06SWF | 666 | 799 | 998 | 800   | 655   |
| 0EZ/20E | VSD 0325K-04FP12ESP | 391 | 469 | 587 | 2x250 | 2x206 |
| 25/ 325 | VSD 0325K-04FP12SWF | 417 | 500 | 626 | 2x250 | 2x206 |
| 200/200 | VSD 0390K-04FP12ESP | 469 | 563 | 704 | 2x400 | 2x246 |
| 300/390 | VSD 0390K-04FP12SWF | 500 | 601 | 751 | 2x400 | 2x246 |
| 250/454 | VSD 0454K-04FP12ESP | 546 | 655 | 819 | 2x400 | 2x287 |
| 355/454 | VSD 0454K-04FP12SWF | 582 | 699 | 874 | 2x400 | 2x287 |
| 411/500 | VSD 0520K-04FP12ESP | 624 | 749 | 936 | 2x400 | 2x328 |
| 411/520 | VSD 0520K-04FP12SWF | 666 | 799 | 998 | 2x400 | 2x328 |
| 057/005 | VSD 0325K-04FP24ESP | 391 | 469 | 587 | 4x250 | 4x103 |
| 20//325 | VSD 0325K-04FP24SWF | 417 | 500 | 626 | 4x250 | 4x103 |
| 202/222 | VSD 0390K-04FP24ESP | 469 | 563 | 704 | 4x250 | 4x123 |
| 308/390 | VSD 0390K-04FP24SWF | 500 | 601 | 751 | 4x250 | 4x123 |

| 359/454 | VSD 0454K-04FP24ESP | 546 | 655 | 819 | 4x250 | 4x143 |
|---------|---------------------|-----|-----|-----|-------|-------|
|         | VSD 0454K-04FP24SWF | 582 | 699 | 874 | 4x250 | 4x143 |
| 411/520 | VSD 0520K-04FP24ESP | 624 | 749 | 936 | 4x250 | 4x164 |
|         | VSD 0520K-04FP24SWF | 666 | 799 | 998 | 4x250 | 4x164 |

<sup>2</sup>The MCCB trip value is factory set to correspond with VSD's input current rating and rectifier configuration – 6 pulse/12 pulse/24 pulse.

<sup>3</sup>:SWF Ratings are for 60 Hz output. Please see <u>Figure 52</u> for the derating curve for frequencies higher than 60 Hz.

### Appendix C: Circuit Breakers and Cable Sizing

#### Table 8: Recommended Circuit Breakers & Cable Sized for 131°F (55°C) Ambient

### Recommended Cable Sized for NEMA 4 / IP56 Drive, 131°F (55°C) Ambient

All power cabling must be 167°F (75°C) rated per UL 508C. The cable sizes below are based on 131°F (55°C) ambient temperature and will work under all circumstances. Cable sizes may be calculated based on your local maximum ambient. Higher temperature rating cables may be used but must be sized for 75°C rating.

| VSD<br>Model                   | Circuit<br>Breaker        |                          | Cable<br>Size (AWG)                               | Ground<br>Conductor<br>Size |               | Cable Gland     | Lug         | Torque    |  |
|--------------------------------|---------------------------|--------------------------|---------------------------------------------------|-----------------------------|---------------|-----------------|-------------|-----------|--|
|                                | Rating                    | Input<br>Current         | (x) =<br>Conductors<br>per phase                  | (Included<br>in Cable)      | Cable P/N     | P/N             | P/N         | (in./lb)  |  |
|                                |                           |                          |                                                   | (x) = No. of<br>Conductors  | Input/Out     | Input/Output    | Output      | Input/Out |  |
| VSD<br>0130K-<br>04FP06ESP     | 250A                      | 164                      | 250MCM,<br>(1) per<br>input,<br>(1) per<br>output | #4 AWG<br>(In:1/Out:1)      | C902163       | 902174          | 902177      | 225/225   |  |
| VSD<br>0200K-<br>04FP06ESP     | 400A                      | 253                      | 3/0, (2) per<br>input,<br>(2) per<br>output       | #4 AWG<br>(In:2/Out:2)      | C902161       | 902172          | 88152       | 442/225   |  |
| VSD<br>0260K-<br>04FP06ESP     | 400A                      | 329                      | 250MCM,<br>(2) per<br>input,<br>(2) per<br>output | #4 AWG<br>(In:2/Out:2)      | C902163       | 902174          | 902177      | 442/225   |  |
| VSD<br>0325K-<br>04FP06ESP     | 400A                      | 411                      | 4/0, (3) per<br>input,<br>(3) per<br>output       | #4 AWG<br>(In:3/Out:3)      | C902162       | 902173          | 48455       | 442/225   |  |
| VSD<br>0390K-<br>04FP06ESP     | 600A                      | 492                      | 250MCM,<br>(3) per<br>input,<br>(3) per<br>output | #4 AWG<br>(In:3/Out:3)      | C902163       | 902174          | 902177      | 442/225   |  |
| VSD<br>0454K-<br>04FP06ESP     | 600A                      | 573                      | 350MCM,<br>(3) per<br>input,<br>(3) per<br>output | #3 AWG<br>(In:3/Out:3)      | C902164       | 902175          | 902178      | 442/225   |  |
| VSD<br>0520K-<br>04FP06ESP     | 800A                      | 655                      | 500MCM,<br>(3) per<br>input,<br>(3) per<br>output | #2 AWG<br>(In:3/Out:3)      | C902165       | 902176          | 86659       | 442/225   |  |
| Note: for 013<br>armor, XLP, 9 | 0-0260 6-P<br>90°C (sized | ulse Drive<br>I as 75°C) | s, the Cables a                                   | re copper, 3 co             | onductors wit | h ground conduc | tor and all | uminum    |  |
| VSD<br>0130K-<br>04FP12ESP     | 2-250A                    | 2x82                     | 1/0, (1) per<br>input,<br>(2) output              | #6 AWG<br>(In:2/Out:2)      | C902159       | 902169          | 51145       | 225/225   |  |
| VSD<br>0200K-<br>04FP12ESP     | 2-250A                    | 2x127                    | 3/0, (1) per<br>input,<br>(2) output              | #4 AWG<br>(In:2/Out:2)      | C902161       | 902172          | 88152       | 225/225   |  |

| VSD<br>0260K-<br>04FP12ESP | 2-250A | 2x165 | 250MCM,<br>(1) per<br>input,<br>(2) output | #4 AWG<br>(In:2/Out:2) | C902163 | 902174 | 902177 | 225/225 |
|----------------------------|--------|-------|--------------------------------------------|------------------------|---------|--------|--------|---------|
| VSD<br>0325K-<br>04FP12ESP | 2-250A | 2x206 | 350MCM,<br>(1) per<br>input,<br>(2) output | #3 AWG<br>(In:2/Out:2) | C902164 | 902175 | 902178 | 225/225 |

| VSD<br>Model               | Circuit<br>Breaker |                  | Cable<br>Size (AWG)                                  | Ground<br>Conductor<br>Size             |                                      | Cable Gland             | Lug P/N                | Torque<br>Rating<br>(in./Ib) |
|----------------------------|--------------------|------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------|------------------------|------------------------------|
|                            | Rating             | Input<br>Current | (x) =<br>Conductors<br>per phase                     | (Included<br>in Cable)                  | Cable P/N                            | P/N                     | Output                 | Input/Out                    |
| VSD<br>0390K-<br>04FP12ESP | 2-400A             | 2x246            | 3/0, (2) per<br>input,<br>(4) output                 | #4 AWG<br>(In:4/Out:4)                  | #4 AWG<br>In:4/Out:4) C902161 902172 |                         | 88152                  | 442/225                      |
| VSD<br>0454K-<br>04FP12ESP | 2-400A             | 2x287            | 4/0, (2) per<br>input,<br>(4) output                 | #4 AWG<br>(In:4/Out:4)                  | C902162                              | 902173                  | 48455                  | 442/225                      |
| VSD<br>0520K-<br>04FP12ESP | 2-400A             | 2x328            | 250MCM,<br>(2) per<br>input,<br>500MCM (3)<br>output | In: #4 AWG<br>(2)<br>Out: #2 AWG<br>(3) | In:C902163<br>Out:C902165            | In:902174<br>Out:902176 | In:902177<br>Out:86659 | 442/225                      |
| VSD<br>0325K-<br>04FP24ESP | 4-250A             | 4x103            | 2/0, (1) per<br>input,<br>(4) output                 | #6 AWG<br>(In:4/Out:4)                  | C902160                              | 902171                  | 88160                  | 225/225                      |
| VSD<br>0390K-<br>04FP24ESP | 4-250A             | 4x123            | 3/0, (1) per<br>input,<br>(4) output                 | #4 AWG<br>(In:4/Out:4)                  | C902161                              | 902172                  | 88152                  | 225/225                      |
| VSD<br>0454K-<br>04FP24ESP | 4-250A             | 4x143            | 4/0, (1) per<br>input,<br>(4) output                 | #4 AWG<br>(In:4/Out:4)                  | C902162                              | 902173                  | 48455                  | 225/225                      |
| VSD<br>0520K-<br>04FP24ESP | 4-250A             | 4x164            | 250MCM,<br>(1) per<br>input,<br>500MCM (3)<br>output | #4 AWG<br>(In:4/Out:3)                  | In:C902163<br>Out:C902165            | In:902174<br>Out:902176 | In:902177<br>Out:86659 | 225/225                      |

### **Table 9: Cable Gland Plate Options**

| Model | Gland Plate PN | Description             | Material  |  |
|-------|----------------|-------------------------|-----------|--|
|       | 500031145      | OPT PL GLAND DWG 2N4 AP | GRP       |  |
|       | 500031146      | OPT PL GLAND DWG 2N4 AP | CSW       |  |
| 2N4   | 500031147      | OPT PL GLAND DWG 2N4 AP | SSW       |  |
|       | 500031148      | OPT PL GLAND DWG 2N4 AP | SS NO PNT |  |
|       | 500031149      | OPT PL GLAND DWG 2N4 AP | BRASS     |  |
|       | 500031150      | PL GLAND DWG 4N4 AP     | GRP       |  |
|       | 500031151      | PL GLAND DWG 4N4 AP     | CSW       |  |
| 4N4   | 500031152      | PL GLAND DWG 4N4 AP     | SSW       |  |
|       | 500031153      | PL GLAND DWG 4N4 AP     | SS NO PNT |  |
|       | 500031154      | PL GLAND DWG 4N4 AP     | BRASS     |  |

#### Note:

- CSW Carbon steel white
- SSW Stainless steel white
- SS NO PNT Stainless steel no paint
- GRP Group

### Table 10: Fuses for Basic Power Supply Board

| Designator | Description                            | Baker Hughes P/N | Manufacturer | Mfr. P/N         |
|------------|----------------------------------------|------------------|--------------|------------------|
| F1, F2     | Fuse, 4A 600 V time delay              | 10534928         | BUSS         | FNQ-R-4, ATQ-R-4 |
| F3, F4     | Fuse, 5A 600 V time delay              | C54184           | BUSS         | FNQ-R-5          |
| F5, F6     | Fuse, 3.15A,250v,5x20MM, SLO-<br>BLO   | C901266          | LITTELFUSE   | 02183.15         |
| F7         | Fuse, 6.3A,250v,5x20MM, FAST<br>ACTING | C908171          | LITTELFUSE   | 021706.3*P       |

#### Table 11: Fuses for Internal Control System

|            |                                     | ,                   |              |          |
|------------|-------------------------------------|---------------------|--------------|----------|
| Designator | Description                         | Baker Hughes P/N    | Manufacturer | Mfr. P/N |
| Deelghater |                                     | Daniel Hagnee I /It | manaraetarer |          |
| FU7        | Fuse, 2 amp, 250 V, time delay      | 900967              | BUSSMANN     | #MDL-2   |
| FU10       | Fuse, 4 amp, 250V 5x20MM time delay | C55535              | BUSSMAN      | MDL-4    |
| FU11 & 12  | Fuse, 5 amp, 500V Midget time delay | C48106              | BUSSMAN      | FNQ-5    |
| FU20       | Fuse, 4 amp, 250V 5X20MM time delay | C48109              | LITTELFUSE   | 218004   |

### Appendix D: Dimensions and Approximate Weights

|                     | VSD Model          | Height<br>(in/mm) | Width<br>(in/mm) | Depth<br>(in/mm) | Approx<br>Weight<br>(Ib/ka) |
|---------------------|--------------------|-------------------|------------------|------------------|-----------------------------|
|                     |                    | н                 | W                | D                | (                           |
| ESP                 | VSD 0130-<br>0260K | 81 5/8 /<br>2074  | 50.312 / 1278    | 43 3/4 / 1111    | 1020 / 462.7                |
|                     | VSD 0325-<br>0520K | 81 5/8 /<br>2074  | 53.18 / 1351     | 49.49 / 1257     | 1890 / 857.3                |
| Sine-Wave<br>Filter | VSD 0130-<br>0260K | 81 5/8 /<br>2074  | 50.312 / 1278    | 52 3/8 / 1331    | 1780 / 807.4                |
|                     | VSD 0325-<br>0520K | 81 5/8 /<br>2074  | 53.18 / 1351     | 58.1 / 1476      | 2610 / 1183.9               |

#### **Table 12: General Structural Details Summary**

**Note:** The drive lifting eyes height (3 5/8 in) could be removed from the overall Height (H) indicated in the above table if tight spaces are needed.

Graphics showing the dimensions (D, W, and H) of each drive model can be found in the Outline and Anchor drawings for 2N4 (PN 500031777) and 4N4 (PN 500031977).

### Appendix E: Sine-Wave Filter (SWF) PWM Operation

## Setup of FusionPro variable speed drives with SWF capability applied on Electrical Submersible Pumps

This information applies to FusionPro variable speed drives configured to operate in sine wave filtered (SWF) pulse width modulation (PWM) mode. The following provides a brief overview of the system.

#### SWF PWM SYSTEM OVERVIEW

- In addition to the standard drive's power and control electronics, the SWF-configured drive incorporates series-connected filter Inductors and delta-connected capacitors.
- The carrier frequency of the FusionPro PWM waveform is 3.2 kHz. This frequency is fixed and will not need adjustments for different loads.
- Electrical Submersible Pump (ESP) systems can be damaged by an unfiltered PWM waveform. The FusionPro SWF design prevents this damage by creating a nearly sinusoidal waveform for the ESP system.

<u>Figure 52</u> below shows the derate curve for FusionPro SWF PWM drives for frequencies higher than 60Hz. <u>Table 13</u> shows the percentage load and voltage drop in SWF PWM mode from 10Hz to 200Hz.



Figure 52: FusionPro SWF Drive Derate Curve

### Table 13: Percentage Load and Voltage drop in SWF PWM mode for 60-200Hz Run

| Frequency<br>(Hz) | Load in<br>SWF<br>Mode (%) | Voltage<br>Drop (%) |  |
|-------------------|----------------------------|---------------------|--|
| 10                | 100.0                      | 0.0                 |  |
| 20                | 100.0                      | 0.0                 |  |
| 30                | 100.0                      | 0.0                 |  |
| 40                | 100.0                      | 0.0                 |  |
| 50                | 100.0                      | 0.0                 |  |
| 60                | 100.0                      | 0.0                 |  |
| 70                | 98.9                       | 1.1                 |  |
| 80                | 97.8                       | 2.2                 |  |
| 90                | 96.7                       | 3.3                 |  |
| 100               | 95.6                       | 4.4                 |  |
| 110               | 94.4                       | 5.6                 |  |
| 120               | 93.3                       | 6.7                 |  |
| 130               | 92.7                       | 7.3                 |  |
| 140               | 92.0                       | 8.0                 |  |
| 150               | 91.3                       | 8.7                 |  |
| 160               | 90.7                       | 9.3                 |  |
| 170               | 90.0                       | 10.0                |  |
| 180               | 89.3                       | 10.7                |  |
| 190               | 88.7                       | 11.3                |  |
| 200               | 88.0                       | 12.0                |  |

**Note:** To calculate the output kVA in SWF mode for higher than 60 Hz, please multiply the corresponding percentage load using nominal kVA in <u>Table 7</u>.

#### **OPERATION**

The FusionPro drives are designed to run in ESP and PWM Inverter modes. In PWM the drive will produce nearly sinusoidal waveforms when a FPWM output filter is included. When the drive model includes the suffix FPWM it is assumed that an output filter is an added option.

For a SWF-filtered drive with an FPWM drive model, the Inverter Mode parameter to select is **PWM**. With the PWM inverter mode, the drive will produce a PWM output.

| Ready Manual            | Drive Setup            | 21:53:41      |
|-------------------------|------------------------|---------------|
| ← System Restore Common | Drive Setup Load Setup | Equip Setup 🔶 |
| Start Speed Time Limit  |                        | 60 sec ┥      |
| Run ILimit (Mtr)        | 1                      | 00 A ┥        |
| V Clamp                 | 4                      | 80 V 🖪        |
| Accel Time 60Hz         |                        | 10 sec ┥      |
| Decel Time 60Hz         |                        | 10 sec ┥      |
| Ramp Limit Settings     |                        |               |
| Inverter Mode           | 2:PWM                  | ▼ ◀           |
| Freq Avoidance Settings |                        |               |
| Inverter Rotation       | 0:ABC                  | ▼             |
| Advanced Settings       |                        |               |
| Drive Model             |                        |               |
| Diagnostics             |                        |               |
|                         |                        |               |

#### **Filter Faults**

The FusionPro drive monitors the temperature of the filter inductors and the filter capacitors. Thermal switches are included with high-temperature thresholds. If an inductor or capacitor's internal temperature exceeds the threshold while the drive is running, the switch will open the circuit, and the power section will immediately shut down the drive. The Status screen of the FusionPro display will show either of the following as the last shutdown:

PM Flt Filter Inductor Fault PM Flt Filter Capacitor Fault

| Faulted                                                                             | Run Status                                  |          | 16:37:59         | Faulted                                                    |             | Run Status                          |                | 16:40:13         |
|-------------------------------------------------------------------------------------|---------------------------------------------|----------|------------------|------------------------------------------------------------|-------------|-------------------------------------|----------------|------------------|
| Drive la<br>Outputs 0A                                                              | Ib<br>OA                                    | lc<br>0A | Volts<br>0V      | Drive<br>Outputs                                           | la<br>0A    | lb<br>0A                            | IC<br>0A       | Volts<br>0V      |
| Freq Set<br>DH Intaki<br>DH Moto<br>Well Nan                                        | System Shutdown<br>FusionPro drive has Shut | Down!    | ок               | Freq Set<br>DH Intak<br>DH Moto<br>Well Nan                | Fusio       | System Shutdov<br>nPro drive has Sh | vn<br>ut Down! | ок               |
| Restart                                                                             | 00:58:4                                     | 7        |                  | Restart                                                    |             | 00:59                               | 9:39           |                  |
| Overload Bucket<br>Last Shutdown<br>PM Fit Filter Ind Overheat<br>4Nov2024 16:36:47 | 0.0                                         | 0 %      | 0.0<br>DH Amps   | Last Shutdown<br>PM Flt Filter Cap Ov<br>4Nov2024 16:39:53 | verheat     |                                     | .00 %          | 0.0<br>DH Amps   |
| Active Alarms<br>443:PM Fit Filter Ind Ove                                          | rheat [Stop->Fault]                         |          | Clear - Shutdown | Active Alarms<br>444:PM Fit Filter                         | Cap Overhea | t [Stop->Fault                      | ]              | Clear - Shutdown |

Figure 53: Filter Fault Display

### Appendix F: Motor Overload Protection

Operating the motor above its rated amperage could cause significant or permanent damage to the equipment. To protect, and increase the lifespan and reliability of the motor, the Overload must be properly set.

During the setup, care must be taken to:

- Make sure the settings selected are within the recommended range and not too responsive to the point of creating nuisance trips.
- Make sure the motor is stopped within the recommended time, rather than never stopping.

NEC recommends the Motor Overload be set at 125% of its rated value. FusionPro provides the overload delay time at 25%, for simplification, the Motor Overload can be directly set to the nameplate value. During the operation, if the Motor Overload is greater than the nameplate, an internal timer starts counting the remaining time before the drive shuts down on Overload Fault. The percentage of time remaining before the shutdown is illustrated by the Overload Bucket parameter. The overload Delay time @25% sets how long it takes the motor to shut down if it continuously runs above 25% of the Motor Overload (see Figure 54). Note that:

- If the current supplied to the motor continues to be greater than 25% of the motor overload, it takes less than the time set in the overload Delay @25% time to shut down the drive.
- If the input current of the motor continues to be less than 25% of the motor overload value, it takes longer than the overload Delay @25% time to shut down the drive.
- If the motor is restarted after an Overload Fault and before the Overload Bucket reaches zero, the subsequent shutdown delay time is faster. This is referred to as the electronic motor thermal memory retention.

The motor thermal memory retention is maintained through a loss of power event, and active regardless of the operating speed of the motor. The duration of the thermal memory retention can be increased by adjusting the parameter Overvoltage Drain.

It is very important to always refer to the motor specification when adjusting the overload parameters.

The graph below represents the overload ratio values and the corresponding trip times.



Figure 54: Motor Overload Trip Delay Curve

### **Appendix G: Schematics**



Figure 55: Schematic 500030391 Rev A, SHT-1; FusionPro 2N4/4N4 System Control and Power



### Figure 56: Schematic 500030391 Rev A, SHT-2; FusionPro 2N4/4N4 System Control and Power




Figure 57: Schematic 500030391 Rev A, SHT-3; FusionPro 2N4/4N4 System Control and Power



Figure 58: Schematic 500030391 Rev A, SHT-4; FusionPro 2N4/4N4 System Control and Power



Figure 59: Schematic 500030391 Rev A, SHT-5; FusionPro 2N4/4N4 System Control and Power



Figure 60: Schematic 500030391 Rev A, SHT-6; FusionPro 2N4/4N4 System Control and Power





Figure 62: Schematic 500030391 Rev A, SHT-8; FusionPro 2N4/4N4 System Control and Power