

PanaFlow[™] MV82

Medidor de vazão multivariável de inserção para massa, temperatura e pressão

Vantagens chave

- Medidor de vazão de vórtice multi-variável para medição do fluxo volumétrico, temperatura, pressão, densidade e fluxo de massa utilizando um único medidor
- Desenho avançado e processamento de sinal digital para isolamento de vibração
- Medidor rentável, preciso e confiável para medições volumétricas e de fluxo de massa na maioria dos gases, líquidos e vapor sem a necessidade de voltar a calibrar
- Gestão de energia através de medições precisas de temperatura e de fluxo de massa simultaneamente
- Monitorização remota e integração no DCS utilizando os protocolos de comunicação HART® e Modbus®
- Economia significativas através de custos reduzidos de instalação, passagens de ligações eléctricas e serviços de apoio utilizando um medidor MV sem peças móveis
- FM aprovado nos EUA/Canadá, à prova de explosão e à prova ignição de pó

Aplicações

- Ideal para altas temperaturas e vapor de alta velocidade
- Produção de Energia: aplicações a vapor
- Industrial: HVAC, gestão de energia por sector
- Comercial: construção, gestão de energia em instalações e em campus
- Petróleo e gás: distribuição de gás natural
- Petroquímica:compensação de massa, aquecimento de processos de reacção

Desenho multi-variável exclusivo

O medidor de caudal de Vórtice de Massa Multi-variável de Inserção PanaFlow MV82 da Panametrics é um medidor de vórtice da próxima geração. A concepção multivariável do PanaFlow MV82 consiste num sensor de velocidade de perda de vórtice, um sensor de temperatura e um transdutor de pressão de estado sólido que mede a taxa de fluxo de massa de vapor, gases e líquidos.

Outros tipos de medidores utilizam processos de medição externos para calcular o fluxo de massa. Geralmente, os dispositivos de temperatura e pressão não estão instalados na mesma localização do medidor de vazão. As condições de processamento podem variar muito entre duas localizações provocando leituras de fluxo de massa imprecisas. O PanaFlow MV82 mede a velocidade, a temperatura e a pressão na mesma localização, fornecendo assim uma medição de processamento mais precisa.

Simples e rentável

Integrar a pressão e a temperatura num medidor de vazão de vórtice simplifica a complexidade do sistema e ajuda a minimizar os custos de capital iniciais, bem como reduz os custos de instalação. Não há necessidade de comprar instrumentação adicional para monitorizar a pressão e a temperatura uma vez que o PanaFlow MV82 exportará todos os parâmetros para o seu sistema de aquisição de dados. A linha do produto está disponível com uma vasta gama de opções e configurações do medidor para ir ao encontro dos seus requisitos de aplicações específicos.

Portfólio de soluções de medidor de vazão

A Panametrics compromete-se a fornecer aos seus clientes as melhores tecnologias para as suas necessidades de medição de vazão. O PanaFlow MV82 é o mais recente complemento de medidores de vazão da família PanaFlow, fornecendo soluções eficazes para tamanhos de tubo mais pequenas para várias aplicações. A Panametrics fornece o PanaFlow MV82 com um grande número de configurações para melhor se adequar às suas necessidades de medição da aplicação.

PanaFlow MV82-VTP

O MV82-VTP oferece funcionalidade de vazão por computador num dispositivo de campo compacto. Este instrumento multi-variável integra sensores de temperatura e pressão para fornecer uma leitura instantânea de taxa de vazão de massa compensada de gases, líquidos e vapor. Complementando as saídas para as definições de alarme e massa totais, a eletrônica configurável no campo oferece até 3 saídas analógicas de 4 a 20 mA de cinco medições de processamento, incluindo a taxa de vazão volumétrica, a taxa de vazão de massa, pressão, temperatura e densidade.

PanaFlow MV82-VTP

O MV82-VT integra um sensor de temperatura RTD platinum preciso de 1000 ohm utilizado para calcular e exportar a leitura de caudal de massa compensada. Normalmente utiliza-se este dispositivo para medir taxas de caudal de vapor saturado.

PanaFlow MV82-V

O MV82-V oferece uma leitura direta da taxa de vazão volumétrica – normalmente a solução mais rentável para a monitorização de fluxo líquido – em aplicações que vão desde medições gerais de fluxo de água até medições de fluxo de combustível.

PanaFlow MV82-EM

A opção de monitorização de energia MV82-EM permite o cálculo em tempo real do consumo de energia para uma instalação ou processo. Pode programar-se o medidor para medir vapor, água quente ou fria. Esta opção utiliza o medidor de vazão MV82-EM para monitorizar um lado do processo, quer seja enviado ou devolvido, e utiliza a entrada de um segundo sensor de temperatura separado no lado oposto do processo para calcular a alteração de energia. As unidades de energia seleccionáveis incluem BTU, joules, calorias, Watt/hora, Megawatt/hora e Potência Propulsiva/hora. A eletrônica local ou à distância indica duas temperaturas, delta T, massa total e energia total.

Model	Configuration	Volumetric flow	Mass flow	Integrated RTD	Integrated pressure	External temperature	External pressure	Typical application	Pipe size*
MV82-V	Volumetric flow for liquid and gas	X						Liquid volumetric flow	2" to 72"
MV82-VT	Mass flow with temperature and assumed saturated steam	х	X	Х				Saturated steam and Liquid mass flow	2" to 72"
MV82- VTP	Mass flow with integrated temperature and Pressure in one device	Х	X	X	X			Steam and gases mass flow	2" to 72"
MV82- VT-EP	Mass flow with integrated temperature and analog input for an external pressure transmitter	X	X	Х			Χ	Steam and gases mass flow (special material, high pressure)	2" to 72"
MV82- VT-EM	Energy using integrated temperature and one input for an RTD transmitter	Х		X		X		Saturated steam and liquid energy	2" to 72"
MV82- VTP-EM	Energy for steam with integrated pressure and temperature and one input for an RTD transmitter	X	X	X	Х	X		Steam energy	2" to 72"

Especificações

Desempenho

Precisão

Precisão de fluxo de caudal de massa para gás e vapor com base em 50-100% de intervalo de pressão.

Medidor de caudal preciso PanaFlow MV82						
Variáveis do Processo	Líquidos	Gás e Vapor				
Taxa de vazão Volumétrica	± 1.2% da taxa	± 1.5% da taxa				
Taxa de vazão de Massa	± 1.5% da taxa	± 2% da taxa				
Temperatura	± 2°F (± 1°C)	± 2°F (± 1°C)				
Pressão	± 0.3% de escala máxima	± 0.3% de escala máxima				
Densidade	± 0.3% de leitura	±0 .5% de leitura				

Repetibilidade

Taxa de vazão de Massa ± 0.2% da taxa Taxa de vazão de Volumétrica ± 0,1% da taxa Temperatura ± 0,1°C Pressão ± 0,05 % de EM Densidade ± 0,1 % da leitura

Estabilidade durante 12 Meses

Taxa de vazão de Massa ± 0,2 % da taxa Taxa de vazão Volumétrica Negativa Temperatura ± 0,5°C Pressão ± 0,1 % de EM Densidade ± 0,1 % da leitura

Tempo de resposta

Ajustável de 1 a 100 segundos

Funcionamento

Temperatura de processo e ambiente

Temperatura Padrão do Processo (código ST): -40 a 260°C

Alta Temperatura do Processo (código ST): até 400°C Funcionamento Ambiente: -40 a 85°C Armazenamento Ambiente: -40 a 85°C

Classificações do transdutor de pressão						
Pressão de Funcionamento de Escala Máxima		Intervalo de Sobrepressão	Máx.			
psia	bara	psia	bara			
30	2	60	4			
100	7	200	14			
300	20	600	40			
500	35	1000	70			
1500	100	2500	175			

Classifica	ções de pressão		
Tipo de Ligação	Proceso	Classificação	Encomendar
	NPT Macho 50 mm (2") Flange	ANSI 600 lb	CNPT
	2" 150 lb (50mm 70 kg) Flange	ANSI 150 lb (50kg)	C150
	2" 300 lb (50 mm 135 kg) Flange	ANSI 300 lb (135 kg)	C300
	2" 600 lb (50 mm 275 kg)	ANSI 600 lb (275 kg)	C600
Material de	encapsulamento		
	NPT Macho 50 mm (2") Flange	50 psig (3.5 barg)	PNPT
	2" 150 lb (50mm 70 kg) Flange	50 psig (3.5 barg)	P150
	2" 300 lb (50 mm 135 kg) Flange	50 psig (3.5 barg)	P300
Packing Glo	and and Removable	Retractor	
Ĵ	NPT Macho 50 mm (2") Flange	ANSI 300 lb	PNPT and RR
	2" 150 lb (50mm 70 kg) Flange	ANSI 150 lb (70kg)	P150 and RR
	2" 300 lb (50 mm 135 kg) Flange	ANSI 300 lb (135kg)	P300 and RR
Packina Glo	and Permanent	Retractor	
	NPT Macho 50 mm (2") Flange	ANSI 600 lb	PNPTR
	2" 150 lb (50mm 70 kg) Flange	ANSI 150 lb (70kg)	P150R
	2" 300 lb (50 mm 135 kg) Flange	ANSI 300 lb (135kg)	P300R
	2" 600 lb (50 mm 275 kg)	ANSI 600 lb (275kg)	P600R

Requisitos de energia

Modelo M82-V: ciclo de alimentação de 12 a 36 VCC Modelo M82-VTP, Opção de CC: 12 a 36 VDC, 100 mA máx. Modelo M82-VTP, Opção de CA: 85 a 240 VAC, 50/60Hz, 1 Watt

Visor

Visor digital LCD alfanumérico de 2 linhas x 16 caracteres Seis botões para configuração completa no terreno Podem utilizar-se os botões com uma varinha magnética sem a remoção das tampas do invólucro Pode montarse o visor em intervalos de 90º para uma melhor visualização

Sinais de saída

Analógico: 4 a 20 mA, alimentação em circuito para medidores volumétricos

Alarme: relé de estado sólido, 40 VDC

Impulso Total: 50 milisegundos, 40 VCC

Volumétrico: um analógico, um impulso totalizador, HART Multi-variável: até três sinais analógicos, três alarmes, um impulso totalizador, HART

Opção Multi-variável: monitorização de processo Modbus

Físico

Materiais molhados

Aço inoxidável 316L, e:

- Vedante de rosca à base de PTFE em modelos com transdutor de pressão
- Embalagem em PTFE em modelos de temperatura padrão com material de encapsulamento
- Embalagem à base de grafite em modelos para altas temperaturas com vedante

FM aprovado nos EUA/Canadá

À prova de explosão para a Classe I, Divisão 1, Grupos B, C e D À prova de ignição de pó para a Classe II/III, Divisão 1, Grupos E, F e G Tipo 4x e IP66 T6 na Tamb = 60°C

Considerações de tamanho

Condições de tubagem			
Condição	Diâmetros do Tubo, D		
	A montante	A jusante	
Um cotovelo de 90° antes do medidor	10D	5D	
Dois cotovelos de 90º antes do medidor	15D	5D	
Dois cotovelos de 90º antes do medidor, fora do plano	25D	5D	
Redução antes do medidor	10D	5D	
Expansão antes do medidor	20D	5D	
Válvula parcialmente aberta	25D	5D	

Alcance da velocidade

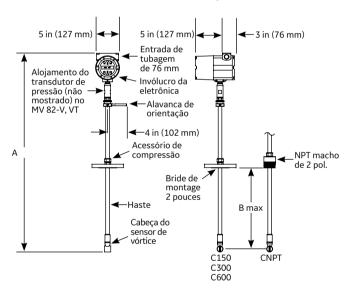
Velocidade máxima, líquido: 9 metros/segundo Velocidade mínima, líquido: 0,3 metros/segundo Velocidade Máxima, gás ou vapor: 90 metros/segundo Velocidade mínima, gás ou vapor metros/segundo:

Consulte o programa de tamanho do PanaFlow MV para um cálculo fácil do intervalo de vazão.

Taxas de vazão máximas e mínimas da água						
Taxa	Tamanl	no nomin	al do tub	o em (mi	m)	
	3	6	8	12	16	24
GPM min	20.6	81.3	142	317	501	1138
GPM max	618	2437	4270	9501	15043	34144
	Tamanh	o nomino	al do tubo	em (mr	n)	
	80	150	200	300	400	600
M3/hr min	5.2	20.4	35.4	79.2	125	284
M3/hr max	157	614	1062	2337	3753	8537

Taxas de vazão de vapor saturado normal mínimas e máximas (lb/hr)						
Tamanho	nomino	ıl do tubo	em (mm)		
Pressão	3	6	8	12	16	24
5 psig	205	800	1385	3099	4893	11132
	2721	10633	18412	41196	65039	147954
100 psig	468	1831	3170	7092	11197	25472
	14246	55674	96407	215703	340546	774698
200 psig	632	2471	4278	9572	15111	34377
	25948	101405	175595	392880	620268	1411029
300 psig	762	2976	5153	11530	18203	41410
	37652	147145	254799	570093	900047	2047489
400 psig	873	3412	5908	13219	20870	47477
	49494	193420	334930	749382	1183103	2691404
500 psig	974	3805	6588	14741	23272	52942
	61543	240507	416468	931816	1471125	3346615

Taxas de vazão de vapor saturado normal mínimas e máximas (lb/hr)						
Tamanho	nomina	l do tubo	em (mm)		
Pressão	80	150	200	300	400	600
0 barg	81	316	548	1226	1936	4404
	938	3667	6350	14209	22432	51039
5 barg	187	729	1263	2826	4461	10151
	4946	19486	33742	75495	119189	271187
10 barg	249	972	1683	3767	5947	13530
	8859	34620	59949	134132	211764	481821
15 barg	298	1164	2016	4510	7120	16200
	12700	49629	85939	192283	303570	690705
20 barg	340	1329	2301	5148	8128	18493
	16550	64676	111995	250581	395609	900119
30 barg	413	1612	2791	6246	9860	22435
	24357	95187	164827	368789	582234	582234


Taxas de vazão de ar normal mínimas e máximas (SCFM) a 21ºC						
Tamanho	nomino	l do tubo	em (mm)		
Pressão	3	6	8	12	16	24
0 psig	56	220	381	852	1345	3059
	924	3611	6253	13991	22089	50250
100 psig	157	615	1065	2383	3763	8560
	7236	28279	48969	109564	172977	393500
200 psig	216	843	1460	3266	5156	11729
	13588	53101	91950	205732	324804	738886
300 psig	262	1022	1770	3960	6251	14221
	19974	78059	135169	302430	477467	1086176
400 psig	301	1175	2034	4551	7186	16346
	26391	103136	178593	399588	630859	1435121
500 psig	335	1310	2269	5077	8015	18233
	32834	128314	222191	497136	784865	1785464

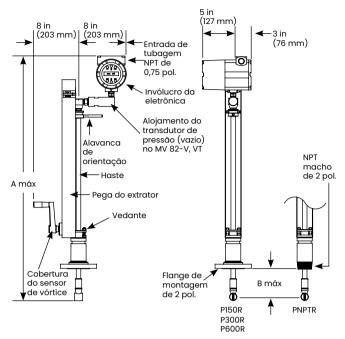
Taxas de vazão de vapor saturado normal mínimas e máximas (lb/hr)						
Tamanho	nomino	ıl do tubo	em (mm)		
Pressão	80	150	200	300	400	600
0 barg	89	347	601	1345	2124	4833
	1463	5716	9897	22145	34962	79547
5 barg	217	847	1467	3282	5181	11788
	8702	34006	58885	131751	208004	473266
10 barg	294	1148	1987	4446	7020	15972
	15975	62430	108105	241878	381870	868857
15 barg	355	1385	2399	5368	8474	19282
	23280	90979	157542	352487	556497	1266182
20 barg	407	1589	2751	6156	9718	22112
	30615	119642	207175	463539	731823	1665095
30 barg	495	1934	3349	7493	11829	26915
	45361	177268	306961	686081	1084302	2467081

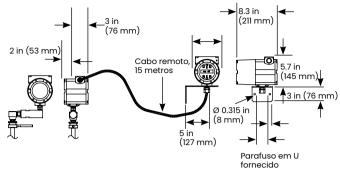
Margem

A Margem (turndown) depende da aplicação. Consulte o programa de tamanho do PanaFlow para valores exatos. A margem pode exceder 100:1.

Esquema dimensional: modelos de acessório de compressão

Esquema dimensional: modelos de material de Encapsulamento


Com estes Modelos pode utilizar-se um extrator removível


PanaFlow MV82 pol (mm)	SL/con	SL/compact		rimento Ido
	Α	В	Α	В
PNPT, Vedante,	40.5	21.5	52.5	33.5
NPT Macho	(1029)	(546)	(1334)	(851)
P150, Vedante,	40.5	21.1	52.5	33.1
Flange de 150 lb	(1029)	(536)	(1334)	(841)
P150, Vedante,	40.5	21.1	52.5	33.1
Flange de 300 lb	(1029)	(536)	(1334)	(841)

Peso aproximado lb (kg)					
	SL	EL			
PNPT	16 (7.1)	17 (7.6)			
P150	21 (9.4)	22 (9.9)			
P300	25 (11.3)	26 (11.8)			
Adicione 5 kg para eletrônica à distância					

Esquema dimensional: modelos de vedante com extractor permanente

Esquema dimensional: opção de eletrônica à distância

PanaFlow MV82 pol (mm) com extrator permanente	SL/Standard		EL/Comprimento Alargado	
	Α	В	Α	В
PNPTR, Vedante, NPT Macho	40.5 (1029)	21.5 (546)	52.5 (1334)	33.5 (851)
P150R, Vedante, Flange de 150 lb	40.5 (1029)	21.1 (536)	52.5 (1334)	33.5 (841)
P300R, Vedante, Flange de 300 lb	40.5 (1029)	21.1 (536)	52.5 (1334)	33.1 (841)
P600R, Vedante, Flange de 600 lb	40.5 (1029)	21.1 (536)	52.5 (1334)	33.1 (841)

Peso Aproximado lb (kg)				
	SL	EL		
PNPT	25 (11.5)	32 (14.5)		
P150	30 (13.7)	37 (16.7)		
P300	34 (15.5)	41 (18.5)		
P600	35 (16.0)	42 (19.0)		
Adicione 5 kg para eletrônica remota				

Informação de encomenda do PanaFlow MV82

Código do número matriz

MV82

Medidor de Vazão de Massa Multi-variável de Inserção Característica 1 : Opções multi-variáveis: Medidor de vazão volumétrica para líquido, gás e vapor VT Sensores de velocidade e de temperatura VTP Sensores de velocidade, temperatura e pressão VT-EM Opções de Saída de Energia VTP-EM Opções de energia com sensor de pressão Característica 2: Comprimento da sonda SI Comprimento Standard CL Comprimento compacto EL Comprimento alargado Característica 3: Invólucro da eletrônica Invólucro de Tipo 4X na eletrônica local na sonda R (25) Cabo de 8 m de Tipo 4X da eletrônica à Distância R (50) Cabo de 1 7 m de Tipo 4X da eletrônica à Distância Característica 4: Opções do visor Visor Digital e Botões de Programação ND Sem Visor Característica 5: Potência de entrada DC2 12 a 36 VDC necessário em medidores com 2 cabos (alimentação em circuito) com apenas 1 AHL Medidor standard de 1 2 a 36 VDC com 4 cabos DC4 CA 100-240 VCA, 50/60 Hz Característica 6: Sinal de saída Opção de alimentação em circuito – uma saída analógica (4-20 mA), protocolo de co municação HART, um impulso - Deve utilizar a potência de entrada CC2 Uma saída analógica (4-20 mA) um alarme, um impulso, protocolo de comunicação HART 1 AM Uma saída analógica (4-20 mA) um alarme, um impulso, protocolo de comunicação HART ЗАН Três saídas analógicas (4-20 mA) três alarmes, um impulso, HART, (apenas VT, VTP) ЗДН Três saídas analógicas (4-20 mA) três alarmes, um impulso, MODBUS, (apenas VT, VTP) Característica 7: Opções de temperatura de processos Temperatura de processo standard -40° a 260°C нт Temperatura alta de processo 400°C Característica 8: Opções de pressão P0 Sem sensor de pressão Máximo 30 psia (2 barg), Proof 60 psia (4 barag) Máximo 1 00 psia (7 barg), Proof 200 psia (1 4 barag) Р3 Máximo 300 psia (20 bara), Proof 600 psia (41 baraa) Máximo 500 psia (34 barg) Proof 1 000 psia (64 barag) Р4 Máximo 1 500 psia (1 00 barg), Proof 2500 psia (1 75 barag) Característica 9: Ligações de processo Compressão, Vedante NPT de 2 pol P40 , Flange DN50 PN40 C1 50 Compressão, Vedante de 2 pol 1 50# com Flange PNPTR , NPT de 2 pol, Extrator C1 6 Compressão, Vedante DN50 PN1 6 com Flange P1 50R, Flange 1 50# com 2 pol, Extrator C300 Compressão, Vedante com Flange P1 50R de 2 pol, Flange DN50 PN1 6, Extrator C40 Compressão, vedante P300R com Flange DN50 PN40, Flange 300# de 2 pol , Extrator C600 Compressão, Vedante P40R com Flange 600# de 2 pol , Flange DN50 PN1 6, Extrator C64 Compressão, vedante P300R com Flange DN50 PN40, Flange 272,1 6kg de 2 pol , Extrator PNPT Vedante, Vedante NPT P64R de 2 pol , Flange DN50 PN64, Retratorr P1 50 Vedante, Flange de 5,08 cm P1 6 Vedante, Flange de DN50 PN1 6 P300 Vedante, Flange 300# de 2 pol.

A Panametrics uma companhia Baker Hughes, provê soluções para as aplicações mais difíceis em medição de vazão de gases, vapor e líquidos bem como análise de umidade, oxigênio e hidrogênio. Especialistas em gerenciamento de flare, as tecnologias Panametrics também reduzem emissões e otimizam sua performance.

Contando com alcance mundial, soluções para medições críticas e gerenciamento de emissões de flare estão suportando clientes com eficiência a alcançar suas metas de redução de carbono, targets rigorosos nos segmentos de Óleo & Gás, Petroquímicas, Saneamento, Alimentos e Bebidas entre muitos outros.

Junte-se nas nossas discussões e siga-nos no LinkedIN: linkedin.com/company/panametricscompany

