ORBIT 60 SERIES System Overview Datasheet

Bently Nevada Machinery Condition Monitoring

137M5182 Rev. U

Plant-wide • One System

The Orbit 60 Series Protection and Condition Monitoring System provides one continuous, online monitoring system for both critical and plant-wide applications.

Cyber Secure • Data Isolation

Orbit 60 Series data isolation creates a safe industrial data environment designed to meet IEC 62443-4-2 with world class network security features and segregation of protection and condition monitoring functions.

Modular • Flexible • Scalable

The Orbit 60 Series system is deployable in any combination of rackmounted and distributed hardware. This provides for better alignment of instrumentation to the machinery application.

High Speed Process Data Integration

Next generation architecture facilitates full bi-directional communications with plant control systems over a suite of standard protocols.

Extended Field Wiring Length

With the Orbit 60 Series distributed architecture, connection of multiple chassis through Bridge modules decreases overall electrical installation costs, reduces analog ground loops and noise issues, and moves key maintenance activities further from hazardous areas.

Industry Leading System Capabilities

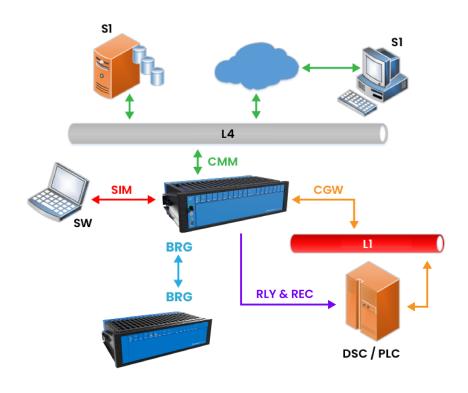
The Orbit 60 Series supports monitoring of one or multiple machine trains in a single deployment. One System Interface Module (SIM) defines each system and can encompass up to 68 dynamic channels.

Bently Nevada

a Baker Hughes business

Overview

The Orbit 60 Series Protection and Condition Monitoring System provides a single platform for the continuous online monitoring of both critical and plant-wide applications. The Orbit 60 Series system is deployable in any combination of rack, bulkhead, or panel mounted hardware and distributed hardware, with Bridge modules creating a seamless connection between chassis to make a single system.


The next table gives a general overview of the components that make up the Orbit 60 platform.

System Modules	User Guide (142M9080)	Chassis	3U Chassis - 19 general purpose slots 6U Chassis - 28 general purpose slots
		Power	Power Interface Module (PIM)
		Processors	System Interface Module (SIM) Protection Processing Module (PPM)
BRG	User Guide (137M4882)	Expansion/Remote IO	Fiber Bridge Module
СММ	User Guide (148M9082)	S1 Interface	Condition Monitoring Module (CMM)
CGW	User Guide (148M9083)	Comms	Communication Gateway (CGW) - Modbus (Ethernet) - EGD (Ethernet) - PROFINET (Ethernet)
Input Modules	User Guide (137M0804) (168M9885)	Dynamic 4-channel	Negative Dynamic Input (PAV, PAS, PAA, PAD, KPH) (provides power for negatively powered transducers) Positive Voltage Transducers Dynamic Input (PVT) (provides power for positively powered transducers)
		Static 4-channel	Static Displacement Input (AC LVDT) AC and DC Linear Variable Differential Transducers
RTD/TC, Process, Discrete	User Guide (157M8568)	Static 6-channel	RTD/TC Temperature (RTD) Process Variable Isolated Discrete Input (PVD)
Output Modules	User Guide (146M5032)	Relays 8-channel	Electro Mechanical Relays (EMR). Solid State Relays (SSR)
	(180M2035)	Rec Outs 8-channel	Recorder Outputs (REC)
Display and CPU	User Guide (137M0702)	Display	External Display (EXD)

Table 1: Component Modules

Orbit 60 System Level Diagram

- **SIM** System Interface Module
- **CMM** Condition Monitoring Module
- CGW Comm Gateway Module

RLY & REC - Relay Outputs and/or Recorder Outputs

- **BRG** Bridge Module
- SI System 1 Server or Client

CNFG - Orbit Studio Configuration Software

DCS/PLC - Distributed Control Systems/ Programmable Logic Controller

- L1 Unit Network
- L2 Control Network
- L4 Business Network

Figure 1: System Diagram

One System Interface Module (SIM) defines a system of up to 64 dynamic channels, accommodating multiple machine trains and supporting unrestricted synchronous Keyphasors for any channel. The Condition Monitoring Module (CMM) interfaces to the business network through a cyber-secure access port. The Communications Gateway (CGW) sends (data, status, setpoints) and receives controls (inhibit, reset, trip multiply) with control systems and plant historians. The Bridge Module allows for additional chassis to be connected while still forming a single system. The Recorder Module outputs analog signals proportional to configured measurement values. Relay Modules provide digital output signals based on configurable logic of system statuses.

Orbit 60 Series Chassis

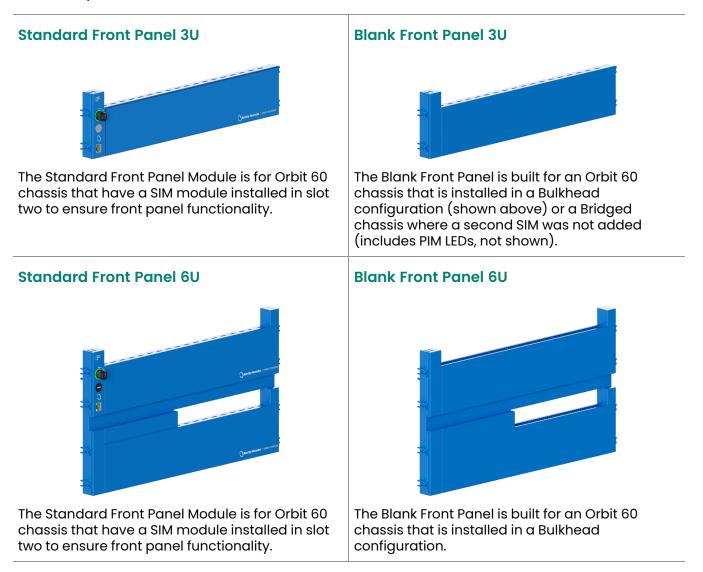
You can flexibly deploy each chassis option with a public facing side (for rack or panel mounts) and a utility side (for wiring connections and bulkhead mounts). Insert modules and make all wiring connections from the utility side. Provisions for the public side of the chassis include status LEDs, configuration port, Config/Run key, and reset button.

Chassis Types

The system is available in two chassis form factors. A 20 position (19 general purpose slots) single row chassis that fits a 3U 19" system format, and a 29 position (28 general purpose slots) double row version that complies with a 6U 19" system format.

3U, 19-Slot (Bulkhead, Rack, or Panel Mount)

6U, 28-Slot (Bulkhead, Rack, or Panel Mount)


Mounting Options

- **Panel Mount Chassis** Mounts through a rectangular cutout in a panel and is secured to the panel using clamps supplied with the chassis.
- Rackmount Chassis Mounts the 3U or 6U chassis on 19-inch EIA rails.
- **Bulkhead Chassis** Typically mounts into a protective enclosure fastened to a sub panel in 3U 19-inch standard, and 6U 19-inch standard configurations.

Front Panel Options

The system front panel features system status LEDs and controls. For the 3U chassis, there are three variations of the front panel: standard front panel for a chassis with a SIM, a front panel for a bridged chassis without a SIM, and a front panel for bulkhead systems. For 6U systems, the two variations include a front panel for rack-mount and panel-mount systems and a blank front panel version for bulkhead systems.

PRG

POWER 1

POWER 2 SIM

RUN-

Statuses

The Standard Front Panel Module shows the status of the power supplies and the presence and operation of the SIM Module.

Key Switch

This front panel places the system into the run or program mode of operation using the key switch. When the key is in the RUN position, the ring lights green and configuration changes cannot be made. When the key is in the PRG, or program mode, the ring lights amber and system configuration changes can be made through Ethernet connection to the SIM or front panel.

Reset

A RESET button is located on the Standard Front Panel. This is used to clear latched alarms, relays, and not OK statuses within the system.

Ethernet

An RJ45 jack provides Ethernet connection to the SIM for external display or configuration tasks from the public side of the system.

System Interface Module

Each Orbit 60 system requires a single System Interface Module (SIM) The SIM provides the user access to manage protection configuration, local display, system-level diagnostics, system LEDs, system contacts, and the system protection fault relay. The SIM occupies one slot and must be adjacent to the Power Input Module (PIM) in the chassis.

The SIM is the access point for configuring and maintaining the system. The module communicates to the Orbit Studio configuration software and transmits the configuration to other modules in the system. The SIM provides a physical access security feature through a key-lock switch on the public side and a contact on the utility side of the SIM. Either of these controls can be used to secure the system configuration, preventing unauthorized changes.

The SIM has three independently configurable Ethernet ports. Each port can be used for system configuration, system time synchronization, temporary troubleshooting, or an external display.

For additional details, see the System Interface Module Datasheet (142M9054).

Communication Gateway Module

The Communication Gateway Module (CGW) provides information to external hosts including measurements, alarms, statuses, and system controls using standard industrial protocols. The CGW is designed for integration with process control and other automation systems.

The Communication Gateway module occupies a single slot and has two RJ-45 Ethernet ports supporting Modbus and EGD protocols.

The module OK LEDs indicate when the module is functioning properly, and the LINK LED indicates when the module is communicating to the rest of the system.

The Comm Gateway Module includes two Ethernet ports which provide TCP/IP communications capabilities. The supported industrial protocols are:

- **Modbus TCP/IP:** Modbus over Ethernet is available for connection to HMI's, unit control systems, or other plant automation equipment. The module can only be configured as a server and supports configurable Modbus addresses within the 40000 address range.
- Ethernet Global Data (EGD): EGD is a GE protocol used on Mark VI and Mark Vie controllers and by GE Programmable Automation Controllers and certain 3rd party automation equipment. Version 3.04 and backward compatibility with previous versions is supported.
- **PROFINET (Process Field Network):** is an open Industrial Ethernet communication protocol used for real-time data exchange between controllers and devices in industrial automation. The CGW operates as a PROFINET device, complying with protocol specification V2.45 (including backwards compatibility), Conformance Class B, Real Time Class 1. The CGW PROFINET implementation supports a point-to-point (direct) network connection from the CGW to the PLC.

For additional details, see the Communication Gateway Module Datasheet

(137M0700).

Protection Processing Module

The Protection Processing Module (PPM) serves as the computational engine for the Orbit 60 monitoring system. It extracts all machinery measurements for the protection system and performs alarm determinations. The PPM analyzes signals from transducers, generates measurements and statuses and publishes them to other modules for data collection and external communication. Each PPM occupies a single slot within the system.

Each PPM provides computational capacity for a large number of sensors and can support typical monitored machine trains. The PPM capacity is a function of the type of processing required on each input. If the system requires more processing than a single PPM can provide, additional PPMs can be added to the system for complex monitoring deployments. For protection systems, redundant PPMs are recommended.

The Orbit Studio Configuration Software provides a System Utilization Calculator to evaluate the remaining capacity of the PPMs in your system. If a PPM processing capacity reaches 90%, a warning indicator is displayed in Orbit Studio software, and it is recommended to add another PPM or two PPMs if the system is redundant.

For additional details, see the Protection Processing Module Datasheet (142M8515).

Condition Monitoring Module

The Condition Monitoring Module (CMM) listens to all information within the system, including all measurements, waveforms, digital transducer signals, system controls, status information, system configuration information, process data from external systems, and alarm and events logs. It only listens, with no capability to write, allowing interface to System 1 over the business networks, with no risk to the protection system.

Each module occupies two slots within the system. Placing multiple CMM modules allows the connection of two independent System 1 clients to the Orbit 60 System. Data is transferred to System 1 continuously, but in the event the connection is lost, non-volatile storage buffers historical data until the information is off-loaded to the host software. System 1 can configure the CMM module to extract additional measurements and waveforms from system sensor data. Without System 1, the customer can use the CMM module to collect data to diagnose machinery issues when an alarm event occurs in the hardware.

For additional details, see the Condition Monitoring Module Datasheet (145M9028).

Power Input Module

The Power Input Modules (PIM) always reside in a special-purposed slot located in the first slot of the chassis. This slot accommodates two PIMs for redundancy. At least one PIM must power every chassis, and every chassis requires its own PIMs and power sources. Redundant PIMs and power sources are strongly recommended.

The PIM is a half-height module that connects an external power source to the system. Each Orbit 60 Series chassis supports two stacked redundant power input modules. Failure of one power source does not affect the operation if the system uses both power inputs. The PIM employs out-of-range protection for miswiring, overvoltage, and overcurrent protection for the input power sources.

The PIMs support input voltages ranging from +21 Vdc to +32 Vdc. The most common power source comes from external DIN rail mounted AC/DC +24 Vdc output power supplies. The Instrument Common (I.S.) and Protective Earth (P.E.) connections for the system are made at the utility side of the PIM. External redundant power supplies are recommended for the system.

Removal and insertion of a single Power Input Module is supported without disrupting system operation, as long as the other PIM remains installed and connected to its input power source.

Note: The markings on the above image are for illustrative purposes only. The markings on your PIM may vary depending on its version.

For additional details, see the Power Input Module Datasheet (163M5233).

For detailed information on required Power Supply, see associated datasheet (142M8947).

Bridge Module (BRG)

The Bridge Module (BRG) allows for additional chassis to be connected together and form a single Orbit 60 system. All information provided by all modules in all chassis is communicated through the bridge modules and their connections. A maximum of two chassis can be bridged together. Even though a single system can be made up of multiple chassis when using the Bridge Module, bandwidth and processing power limitations are not increased. More modules and channels can exist in a single system physically but the same limit on maximum supported measurements and channels is imposed.

The Fiber Bridge Module allows for a maximum distance between chassis of 2000 meters and uses a single mode, OSI or OS2 fiber cable connection. A total of 6dB of attenuation can exist between the ends of the fiber connection, which allows for multiple patch panel connections and fiber repairs to be made without an impact to system communication.

Figure 2: SFP and LC-Type Termination

The links between bridge modules are electrically isolated. This reduces the chance that ground loops between separate chassis are formed. When used for Marshalling cabinets, this also reduces the chance that ground loops between the field wiring and the main system are formed.

Power is not transmitted over the bridge connections. Therefore, each chassis must have its own power supply.

There are no limitations on where different types of modules may be installed in bridged systems. For systems offering protection, bridge modules and their connections are included in the protection path and any faults on them result in the Protection Fault Relay on the SIM being tripped.

Redundant bridging is supported if a second bridge module is installed in each chassis. Failure on one bridge module or the connection between modules will force an automatic transition to the redundant pair of bridges to continue communication.

Each Bridge module occupies a single slot. The module OK LEDs indicate proper module function, and the LINK LEDs indicate a good system communication. The unique Bridge LED indicates the status of the bridge-to-bridge communication link. The bridge-to-bridge communication link is represented as a channel on the module and can be viewed in the bar graph view.

For additional details, see the Bridge Module Datasheet (177M4869).

Dynamic Input Modules

The primary purpose of the Dynamic Input module is to digitize the sensor signal at a rate that completely encompasses the signal content and provides transducer power for various sensors. The Orbit 60 Series Dynamic Input modules are a set of 4-channel input modules available in both negative and positive dynamic input options. The inputs are also used for speed or Keyphasor signals.

The PAV, PAS, PAA, PAD and PVT modules can be configured with up to TWO SPEED CHANNELS with a maximum speed of 12,000 rpm and maximum speed impulse rate of 12,000 cpm (200 Hz). For more than two speed channels on a single dynamic input card, speeds greater than 12,000 rpm or speed impulse frequencies greater than 12,000 cpm (200 Hz) a KPH Module is needed.

All dynamic input modules that support speed or Keyphasor signals can be configured to have Primary and Backup Speed Source support, to allow for speed redundancy functionality. The module supports backup speed source functionality. When configured, if the primary speed source enters an invalid state, a backup speed channel will be utilized to provide a speed reference for configured synchronous measurements. Compensations for differences in shaft speed and phase reference timings can be configured to maintain measurement accuracy upon transitioning to backup speed sources.

The Orbit 60 dynamic input modules are designed for use on a broad range of machine trains or individual casings where the sensor point count fits the monitor's channel count and where advanced signal processing is desired. The modules are optimized for intensive signal processing required on complex machinery such as gearboxes, planetary gearboxes, reciprocating compressors, and roller element bearing (REB) machines, as well as offering advanced measurement capabilities on conventional monitoring methods such as radial vibration, thrust position, piston rod monitoring, and casing absolute vibration.

Negative Transducer Input Modules

The following cards work with negative-voltage external sensors offering four variants:

- PAV Negative Dynamic Sampler (Prox, Accel, Velom)
- **PAS** Negative Dynamic Sampler (Prox, Accel, Seismic)
- PAA Negative Dynamic Sampler (Prox, Accel, Aero)
- **PAD** Negative Dynamic Sampler (Prox, Accel, DC LVDT)
- KPH High Speed Keyphasor (Prox, Accel, Magnetic Pickup)

Positive Transducer Input Module

The Positive Voltage Transducer (PVT) input module interfaces with industry-standard third-party IEPE sensors, as well as sensors that use a 3-wire (power, common, signal) or a custom 2-wire (A/+ and B/-) positive-voltage interface.

The PVT is the preferred module to use for IEPE sensors, including the Bently Nevada Velomitor (3005xx) and IEPE accelerometers. Using the PVT modules for these sensors improves noise performance of the sensor.

• PVT Positive Dynamic Sampler (Prox, Accel, Velom)

The PVT module is recommended for new Velomitor installations only. Projects using the 190501 Velomitor CT or retrofits that reuse other existing Velomitor sensors should use the PAV module unless the user can verify the sensor power limits are appropriate for existing Velomitors.

Connectors

The Dynamic Input module uses an ix Industrial connection to provide access to four buffered transducer output (BTO) connectors for each of the dynamic channels, with short circuit protection. The ix Industrial connection is available on the public and utility side of the module.

For additional details, see the Dynamic Input Modules Datasheet (137M0698).

Keyphasor Input Module

Unlike previous systems, the Orbit 60 Series system supports Keyphasor configurations for any dynamic input channel through the PAV, PAS, PAA, PAD, and PVT input modules. For high-phase accuracy applications (over 12,000 rpm) the Keyphasor Input Module must be used. The input speed limit is 120,000 rpm and can accept input speed signals up to 1,200,000 cpm (20 kHz). Each Keyphasor Input Module can accept up to four speed inputs. Input configurations to this module can also support Acceleration, Differential Expansion, Radial Vibration, and Thrust inputs. The Keyphasor input Module occupies a single slot.

Although the system allows the user to configure channels on the Keyphasor Input Module to serve as non-speed input types as described above, there will be a decrease in accuracy on these measurements when compared to PAV, PAS, PAA, PAD, and PVT modules. The accuracy is decreased from 1% of Full Scale Range to 2% of Full Scale Range on all 3wire (non-speed) connections from 0 to 40 kHz. These non-speed inputs also cannot be utilized in SIL applications. The Keyphasor Input Module can only be utilized in SIL applications when configured for speed inputs.

Any channel on the module can be configured as a once-per-turn Keyphasor or a multiple-event-per-turn speed signal from a rotating shaft or gear used to provide a precision timing measurement. The Keyphasor Input Module Speed Channels can be configured to support Recip Multi-Event Wheel speed signals. The Keyphasor Input Module works with the following transducers:

- Magnetic pickup
- 3-wire Prox
- 3-wire Accel

The 2-wire input connection provides a galvanically isolated, hi-impedance input which primarily supports magnetic pick-up speed sensors. The isolated input eliminates potential ground loops that can occur when speed sensors are shared between the vibration system and other instrumentation.

The Keyphasor Input Module provides a buffered transducer output for each channel. Within Orbit Studio software, each output can be configured within Orbit Studio Software to be either a true analog signal representative of the input or a conditioned/processed digital TTL signal replicating machine speed and maintaining phase with the input signal.

The Keyphasor Input Module can accept a recip multi-event wheel signal, which is used to track shaft rotation more precisely during a revolution. This 13 tooth gear has a unique tooth used to indicate the crank angle reference for specific recip measurements.

The module supports backup speed source functionality. When configured, if the primary speed source enters an invalid state, a backup speed channel will be utilized to provide a speed reference for configured synchronous measurements. Compensations for differences in shaft speed and phase reference timings can be configured to maintain measurement accuracy upon transitioning to backup speed sources.

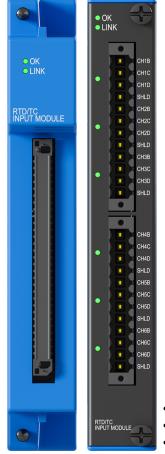
For additional details, see the Keyphasor Input Module Datasheet (157M8566).

AC LVDT Input Module

The Orbit 60 Series AC LVDT Input Module provides inputs to interface with four AC Linear Variable Differential Transformers for position measurements. The module's primary use is the measurement of case expansion and valve position. The AC LVDT input module occupies a single slot.

The four AC LVDT configured channels can connect to a:

- 5-wire AC LVDT
- 6-wire AC LVDT


Note: To configure the 6-wire, 3 and 4 pins are shorted together.

The module's OK LED indicates when the module is functioning properly, and the LINK LED indicate when the module is communicating to the rest of the system. Four channel status LEDs, located on the utility side of the module, indicate that each AC LVDT sensor is connected and functioning properly.

For additional details, see the AC LVDT Input Module Datasheet (173M3153).

Temperature Input Modules

TC/RTD Temperature Module

The primary purpose of temperature modules is to interface to the temperature transducers and convert the signal into a digital representation. These modules condition and digitize the inputs at a rate that completely encompasses the signal content and allows for removal of typical noise sources.

The Orbit 60 Series TC/RTD Temperature Input Modules provide six channels of either Thermocouple (TC) or Resistive Temperature Detector (RTD) temperature input sensors.

Each channel of the Orbit 60 Series TC/RTD input module is individually configurable for sensor type and range using Orbit Studio configuration software.

The RTD/TC inputs reference the internal system ground, and for this reason, should only connect to transducers isolated at the sensing end.

Sensor Types

TC sensors - The thermocouple configured channels provide cold junction compensation for any J, K, E, or T Type Thermocouple.

RTD sensors - The RTD configured channels can be connected to the following:

- 3-Wire 100 Ohm Platinum 0.00392 RTD
- 3-Wire 100 Ohm Platinum 0.00385 RTD
- 3-Wire 10 Ohm Copper RTD
- 3-Wire 120 Ohm Nickel RTD

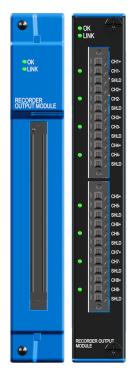
For additional details, see the Temperature Module Datasheet (137M0706).

Isolated Process Variable / Discrete Input Module (PVD)

The Orbit 60 Series Isolated Process Variable and Discrete (PVD) Input module processes machine-critical parameters such as pressure, flow, temperature, and levels that merit continuous monitoring. The module conditions and digitizes the signals so the result can be compared with user-programmable alarm setpoints. The user can program the PVD module using the Orbit Configuration software to perform current, voltage or discrete input measurements. This module provides discrete inputs for essential operational commands, such as Trip Multiply for machine start-up and Alarm Inhibit.

The monitor accepts +4 to +20 mA current inputs or any proportional voltage inputs between -10 Vdc and +10 Vdc, in addition to monitoring "dry" or "wet" contacts from a sensor, switch, or relay.

Primary purposes of the PVD Module:


- Continuously process input from monitored parameters to be compared against configured alarm setpoints to drive alarms for machinery protection.
- Allow provision of essential machine information, such as Trip Multiply for machine startup and Alarm Inhibit for both operations and maintenance personnel.

These modules occupy a single slot. The module OK LEDs indicate proper functioning, and the LINK LEDs indicate good system communication. Six Channel Status LEDs on the utility side of the module indicate a connected sensor in OK condition.

For additional details, see the Process Variable and Discrete Input Module Datasheet (145M9027).

Recorder Module

The recorder output module is a 8-channel single slot width module that provides an analog output signal based on a processed measurement from any of the proportional measurements within the system. The output of the recorder output channel is proportional to the associated measurement value within the measurement's full scale range.

The recorder output module is software-selectable to operate in several output modes, providing the following analog output signal ranges:

- 4 to 20 mA
- 1 to 5 V
- 0 to 10 V

When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR NE43 standard.

These differing signal ranges can accommodate connections to various interfacing equipment designed to consume and interpret the proportional analog signals.

The recorder output module provides analog outputs for any proportional signal measurements available within the Orbit 60 system including the following examples:

- Processed Vibration measurements (Direct, 1X Amplitude, 1X Phase, etc.)
- Temperature measurements
- Position measurements

The recorder output channels' configuration includes several options for clamp output levels, providing an indication of an invalid health status of the associated measurement. The system will also attempt to output the configured clamp signal when any fault within the Recorder Output channel or output load is detected.

The configuration also includes the option to include Recorder Output channels within the protection path so that detected faults within the Recorder module or wiring can be annunciated through Protection Fault relays. (See SIL User Guide 134M0398 for additional details when using the Recorder Output channels in a SIL application.)

For additional details, see the Recorder Output Module Datasheet (137M0704).

Relay Modules

Relay modules may be programed to actuate based on alarm conditions defined in other modules. Use standard logic elements (True AND, Normal AND, OR and NOT) to combine various alarms and statuses (e.g. OK statuses, Bypass, Protection State, Inhibit, Attention, Protection Fault, etc.) into relay activation conditions. Orbit Studio is used to program the voting logic.

Relays can operate as a system or group protection fault relay, if programmed to do so, especially when the protection fault relay on the SIM does not provide adequate granularity of system health - typically for multiple machines in one system.

Pairs of relays within the module function as a single Double-Pole, Double-Throw relay when appropriately configured. Both relay types are available for SIL system implementation. See Orbit 60 SIL User Guide (134M0398) for additional details and design considerations.

Bently Nevada sources and verifies the highest quality components on the market. However, component failures can occur and therefore redundancy is mandatory for SIL/ critical protection applications. It is highly recommended installations follow BN Best practice by deploying redundant relays on two independent relay modules for all other applications.

Electromechanical Relay (EMR)

This relay drives a load directly, or through, an interposing relay. This module takes two slots. It features **8 Epoxy Sealed, Single-Pole Double-Throw Electromechanical Relays.** This module supports an AC voltage range of 5-250 Vac for loads of 100 mA to 4 A. The module also supports DC voltages and loads of 5-30 Vdc at 4 A.

Solid State Relay (SSR)

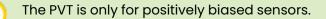
This relay connects to an external system's discrete input for low current communication. It occupies a single slot and features **8 Epoxy Sealed, Single-Pole Double-Throw Solid-State Relays.** This module supports secondary voltages from 1 Vdc up to 125 Vdc and loads of 0.01 to 125 mA.

For additional details, see the Relay Modules Datasheet (137M0699).

Bently Nevada sources and verifies the highest quality components on the market. However, component failures can occur and therefore redundancy is mandatory for SIL/ critical protection applications. It is highly recommended installations follow BN Best practice by deploying redundant relays on two independent relay modules for all other applications.

Input Module Sensors and Channels

Sensor Type Supported	Channel Type			Dynami	c Input Ma (4 channe	odule Ty els)	pe		Static Module (6 chai	
		PAV	PAS	ΡΑΑ	PAD	ΡVΤ	КРН	AC LVDT	Temp	PVD
Proximitor (3-wire)	Differential Expansion, Radial Vibration, Speed, Thrust, Recip Piston Rod	X	x	x	х	X	X			
Magnetic Pickups	Speed						х			
Accelerometer (3-wire)	Acceleration ¹ , Recip Impulse Acceleration	X	х	X	Х	X ²	х			
Charge Amplifier (3-wire)	Acceleration ¹	X	x	X	X ²	χ2	x			
BN 165855 Cylinder Pressure Transducer	Recip Cylinder Pressure					X				
Interface Modules (4-wire)	Acceleration ¹			X						
High-Temp Accel (4-wire)	Acceleration ¹			X						
High-Temp Accel (3-wire)	Acceleration ¹	X	x	X	х	χ2	х			
Negative Biased Constant Current (2- wire)	Acceleration ¹	x								
IEPE Positive Constant Current (2- wire)	Acceleration ¹ , Recip Impulse Acceleration					X				
High-Temp Velocity	Velocity ¹	Х	х	X		χ2				
Negative Biased Constant Current (2- wire)	Velocity ¹	X								
Velomitor® (2-wire)	Velocity ¹	X ^{2, 3}				χ2, 3				
Velomitor CT	Velocity ¹	X ^{2, 3}								
Seismoprobe (2- wire)	Velocity ¹		X							
IEPE Positive Constant Current (2- wire)	Velocity ¹	X3				X				

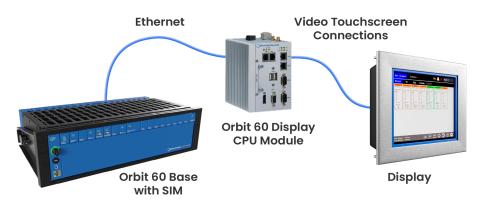


Sensor Type Supported	Channel Type	Dynamic Input Module Type (4 channels)							Static Input Module Type (6 channels)	
		PAV	PAS	ΡΑΑ	PAD	ΡVΤ	КРН	AC LVDT	Temp	PVD
Amplifier/Interface Modules	Dynamic Pressure			X						
Pressure Transducers	Dynamic Pressure					X				
DC LVDT	Valve Position & Case Expansion				Х					
AC LVDT	Valve Position & Case Expansion							X		
3-wire RTD	Temperature								х	
TC – Type J, K, E, T	Temperature								х	
4-20 mA Transmitter, ±10 V Sensor	Process Variable									Х
Dry or Wet Contact, TTL Logic	Discrete Channel									Х

¹ Designates the ability to integrate these measurements to provide additional measurement types.

² These sensors can be configured using a Custom transducer configuration.

³ PVT modules are recommended for new sensor installations only. Projects using the Velomitor CT or retrofits that reuse existing sensors should use PAV or verify sensor power limits.



The PVT module is generally recommended because of its positive bias and higher supply current. However, for Orbit 60 installation retrofits using existing Velomitor[®] sensors, the existing sensors are recommended to be used with PAV modules and configured as custom transducers, unless it can be verified that the sensors are compatible with the PVT with its higher output current.

External Display

The external display utilizes an industrial computer connected to the SIM via Ethernet. The computer and display placement varies based on application needs. The 10.4", 15", and 21.5" VGA touchscreen displays provide excellent viewing quality for industrial applications. The 10.4" display is suitable for use in hazardous area locations across the world. The 15" display is certified for hazardous areas for North America only. The 21.5" display is intended for non-hazardous (safe) area applications only.

Display Mounting Options

You can mount the displays in a remote enclosure, panel, or rack.

- 10.4" Display Can be mounted in a rack, panel, and enclosure.
- 15" Display Can be mounted in a rack, panel, and enclosure.
- 21.5" Display Can be mounted in a rack or panel.

Bently Nevada Industrial Computer

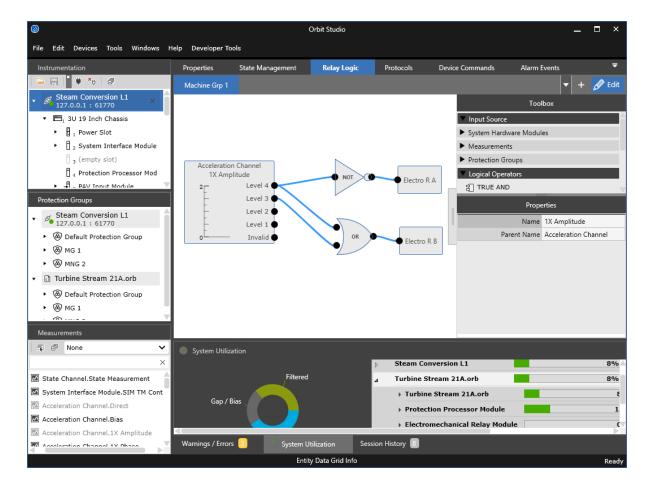
The Orbit 60 Series Industrial Computer is certified for hazardous environments when installed in a NEMA3 or NEMA4 enclosure. The industrial computer communicates with an Orbit 60 Base SIM module to gather and output data to supported displays. The small form factor of 5.2 x 4.8 x 3.4 (132 x 122 x 87 mm) enables DIN-rail mounting.

Orbit Display Software

By default, a bar-graph screen shows all measurements. The Orbit Display software can show bar graphs, alarm lists, event lists, and statuses. Up to 12 Orbit 60 systems can be viewed on one display.

- System-event list
- Alarm-event list
- All module and channel data
- Alarm and OK status

Orbit Studio Configuration Software

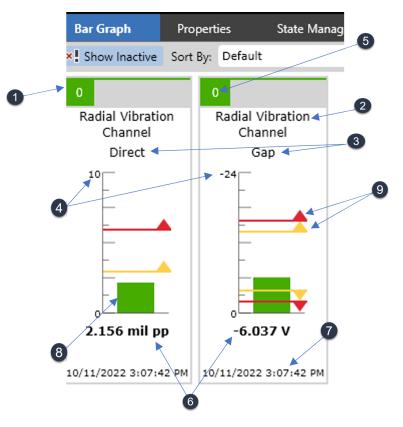

The Orbit Studio software configures Orbit 60 chassis, modules, channels, measurements, setpoints, relays, and many other aspects to protect plant assets. It is also the primary method used to verify systems. For more information, see Orbit Studio online help or Orbit Studio Configuration Software User Guide (137M0696).

Multiple Systems Configuration

You can connect multiple systems from a single Orbit Studio client session. This opens multiple offline configuration files alongside actively connected systems allowing for easy cross-referencing across systems, while enabling security through user-based permissions. You can copy and paste modules and channels across systems and configuration files, as well as send and retrieve configurations for multiple systems at once.

Graphical System and Relay Configuration

Create and manage multiple pages of relay logic by graphically configuring using drag and drop elements and connectors. You can also graphically assemble your system by dragging and dropping components from a library of modules. The resulting assembly produces a hierarchical representation of the system for access to individual channels.



Current Values and Loop Check

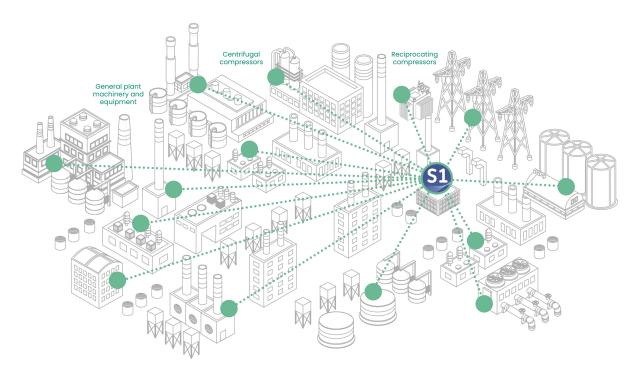
View current value data across all channels within a system. You can use the bar graphs and tabular lists to complete loop checks from channels throughout the system.

To configure the Orbit 60 system, refer to the Orbit Studio online help .

- 1. Overall Health Color
- 2. Channel Name
- 3. Measurement
- 4. Full Scale Range
- 5. Highest Alarm Severity Level
- 6. Measurement Value
- 7. System Time
- 8. Measurement Health
- 9. Alarm Levels

Figure 1: Bar graph Verification Screen for 1 RV Channel

							Orbit Studio						- *
Edit Devices Windows Help													
rumentation	Properties	State Managem	uent Relay I	Logic P	holocolo	Device Com	mands Alarm Even	• 1	yıllem Ever	tabular the	Bar Graph		
8 + 4 5 B / C	They inacti	ve											C Rock P
Cribit 60 System 30.5.76.68 : 61790		Active Parent					Time			Data Status	Node		Overall II
10.5.76.68 : 61760 . 058 60 30 Chassis	Direct		Orbit 60 3U Cha				6/23/2022 2:33:19 P					ware Alarm Three	3
B, Power Sixt	Gap		Orbit 60 3U Cha				6/23/2022 2:33:19 P			OK	0K		0
* 0, sim	1X Amplitude		Orbit 60 3U Cha				6/23/2022 2:33:19 P				0K		0
a (sensity slot)	1X Phase		Orbit 60 3U Cha				6/23/2022 2:33:19 P			OK	0K		0
0 . pom 2	2X Amplitude		Orbit 60 3U Cha				6/23/2022 2:33:19 P				0K		
•	2X Phase	True 1y	Orbit 60 3U Cha	esis > 07 pa	rv brg 3-4 y >	1y > 2X	6/23/2022 2:33:19 P	1 293.9	•	OK	0K		0
A spins													
#, kph2													
signa													
# , kph4 - Shaft Absolute													
+ 6 pev Shaft Hbs													
• 🖏 , 07 per brg 1-4 v	_												
, 1r 8 , 2r													
. 3v													
	· · ·												
clion Groups													
Oribit 60 System 10.5.76.68 61780													
CH System													
30.5.76.70 61780													
urenerbi													
2 @ Note	~												
	× .												
	_												
ty Direct ty Geo													
ty.Gep Ty.D.K.Ampitude		_											
ty IX Phase	Session Histo	w 🔛											
ty 2X Ampitude	5 Admontati	geatevents 🛒 C	Dear All										
12.2X Magettage											1	1-	
10.00	Asses	Type		empletion %							a Action Type		
	CM System		m 18.5.76.70		Configuration					None		Thursday, June 23, 2022 2:30:58 PM	
	CM System	Ovbit 60 Serie	98.5.76.79	100%	Onviex room	anected roots	endulty.			Hane	Reconnect	Thursday, June 23, 2022 2:30:58 PM	
	Warnings./En	on 🚺 😐 S	Intern Utilization	Sensor	Holiny .								


Figure 2: Tabular List Verification Screen for 1 RV Channel

System 1 Integration

Offering plant-wide condition monitoring insights to reduce risk, increase productivity, and minimize unplanned downtime, System 1 streamlines decision-making processes by bringing machine data into a single platform, providing clarity and context to your operations and enterprise. Harnessing the power of Bently Nevada's decades of machinery research and advanced diagnostics expertise, this powerful tool is a key component of successful digital transformation in any industrial facility. By combining its Connectivity, Analytics, and Visualization capabilities, System 1 is the premier Edge historian and condition monitoring platform among industrial operators.

Take full advantage of System 1 Condition Monitoring Software in conjunction with Orbit 60 Series for complete monitoring and advanced diagnostics for all machine types, including roller-element bearings. Use the Orbit 60 Series Condition Monitoring Module (CMM) for a read-only access point to provide a cyber-secure approach for obtaining data through the business network or other systems.

Bently Nevada has a rich heritage in helping customers solve industrial maintenance challenges that is over 60 years strong. Through user research in 25 countries with more than 500 end users, we have studied our customers' team dynamics, site processes, and technology suites to determine how System 1 can best support plant-wide machinery management. The resulting platform is the most comprehensive and user- intuitive condition monitoring solution ever developed.

System 1 Support for Orbit Channels and Measurements

The Orbit 60 Condition Monitoring Module (CMM) interfaces with System 1. Data is transferred from Orbit 60 to System 1 continuously.

- You can view Orbit 60 alarms and system health events in System 1.
- When a measurement triggers an alarm in Orbit 60, the alarm and system events are visible in System 1.

- Alarm and transient data configured in System 1 Data Collection States and Points are also applied to Orbit measurements.
- Orbit measurements can be used to configure triggers for state events (Start up/Shutdown, Running, Slow Roll, or Machine Off) in System 1.
- You can use replication, OPC/DA (data access), and OPC/UA (unified architecture) to export Orbit channels and measurements from System 1.
- System I Audit files contain Orbit channels and measurements.

Specifications

Orbit 60 System

I

Full-Load Chassis					
Power Consumption					
3U 19" full load	Typical: 120 Watts Maximum: 180 Watts				
6U 19" full load	Typical: 160 Watts Maximum: 300 Watts				

The Orbit 60 Series system was qualified with the power supplies listed in datasheet 142M8947. Use of a reduced wattage power supply may result in changed behavior under fault conditions.

Characteristics	3
3U Current Draw:	8.6 Amps Max
6U Current Draw:	14.3 Amps Max
Voltage Input	+21 to +32 Vdc
Out of Range Protection	An undervoltage does not harm the PIM.
	An overvoltage causes the replaceable fuse to open.
Chassis Loading	No minimum chassis loading is required.
Outputs	
Power OK LED	Input Voltage to PIM is within acceptable levels
Weight	
3U 19" Chassis	32 lbs (14.5 kg)
6U 19" Chassis	64 lbs (29.03 kg)

System Physical Dimensions

3U Standard Chassis (19")

See System Modules User Guide (142M9080) for detailed dimensions with illustrations.

Width	19" (48.26 cm)
Height	5.2" (13.21 cm)
Depth	9.67" (24.56 cm): panel and rack mount
	9.76" (24.79 cm): bulkhead mount

6U Standard Chassis (19")

See System Modules User Guide (142M9080) for detailed dimensions with illustrations.

Width	19" (48.26 cm)
Height	10.45" (26.5 cm)
Depth	Depth values includemounted power supplies.
	14.54" (36.94 cm): panel and rack mount
	14.64" (37.18 cm): bulkhead mount
Single Wid	e Module
Width	0.8" (2.03 cm)
11-1-1-1-1	
Height	5.2" (13.21 cm)
Depth	5.2" (13.21 cm) 9.67" (24.56 cm)
	9.67" (24.56 cm)
Depth	9.67" (24.56 cm)
Depth Double Wie	9.67" (24.56 cm) de Module

Environmental Limits (All Modules)

-	
Env	vironmental Limits
Chassis Operating Temperature Range (indoor use only)	3U Chassis: -30°C to +70°C (-22°F to 158°F) 6U Chassis: -30°C to +65°C (-22°F to 149°F) Image: Temperatures over 50°C (122°F) require forced air convection with a minimum airspeed of 0.5 m/s.
Module Temperature Rating Certification	 -30°C to +70°C (-22°F to 158°F) When using a Bridge module, temperatures over 58°C (136°F) require forced air convection with a minimum airspeed of 0.5 m/s. You must still meet the Chassis Operating Temperature Range defined above.
Storage Temperature Range	-40°C to +85°C (-40°F to 185°F)
Relative Humidity	0% to 95% rH non-condensing operating and storage
Vibration	Without Isolators: 0 g to 0.35 g @ 57-500 Hz With Isolators: 0 g to 5 g @ 57-500 Hz

	137M5182 Rev. U						
En	vironmental Limits						
Shock	2" Incline Drop						
Altitude	< 2000 m (6,562 ft)						
	Higher altitudes are possible but are site specific applications. Contact Bently Nevada support if you require higher altitudes.						
Pollution Degree	Pollution Degree 2						
Installation Category	Category II						
wiring a	hat temperature ratings on the cables match the operating rature range.						
	CAUTION						
	LOCATION TEMPERATURE AND HUMIDITY While the system has been tested and capable of achieving the design life when operating in environments up to 70°C, whenever operating any electronics system in elevated humidity or temperatures exceeding 40°C, adding environmental controls maximizes the operational life of the system.						

System Interface Module

System Interface Module (SIM)						
Power Consun	nption					
Typical	7.6 Watts					
Maximum	10.9 Watts					
System Conta	cts					
4 contacts on	Trip Multiply					
utility or rear side	Alarm Inhibit					
	System Reset					
	Configuration Lock					
Voltage In	24 V max					
Current rating	<1 mA to 125 mA					
Protection Fau	lt Relay					
Relay Type	Solid State, Single-Pole, Double Throw					
Voltage	1 Vdc to 125 Vdc					
Current	0.01 to 125 mA					
Communicatio	ns					
1 Ethernet port - public side	Independent Ethernet ports 1000/100/10 Base-T Auto-					
2 Ethernet ports - utility side	negotiation					
Connector	RJ-45					
Supported	NTP time sources					
Connections	Orbit Config - System configuration					
	Orbit Display - Local system display					
Cable Length	100 meters (328 feet) max					

System Interface Module (SIM)

Cyber Security

- Aligned to the IEC 62443-4-2 standard.

- Encrypted communications using latest TLS standards.

- PKI implemented signed firmware images to facilitate secure boot and trusted firmware updates.

- Device identity management uses certificates for trusted connections.

- Configure user, roles and rights account management.

- Uses physical Run/Program control

System Interface Module (SIM)					
Controls and Contacts					
RST Reset Contact or Button	Used to clear all latched alarms and NOT OK statuses across the system. LED indicates reset contact closed. 1				
SAI System Alarm Inhibit Contact	Used to inhibit all alarms within the system. LED indicates the state of the alarming functions within the system.				
TM Trip Multiply Contact	Used to place the system in Trip Multiply. LED indicates that the system is in Trip Multiply mode.				

System Interface Module (SIM)			
LOCK Configuration Lock Contact or Key	PRG - Allows configuration changes to be made to the system. Amber LED indicates the system is in Program mode.		
	RUN - Locks the system, blocking configuration changes. Green LED indicates the system is in Run mode. ²		
NO, ARM, NC Protection Fault Relay	NO, ARM, and NC contacts are all used to wire the output to an external receiver. A green LED indicates that all the protection functions within the system are operational. Red indicates the protection path is faulted and the Protection Fault Relay is in a tripped state (not energized).		

¹ Performed by either closing the contact on the module or pressing the button on the front panel.

² Performed by either closing the contact on the module or setting the key on the front to the RUN setting on the front panel.

Communications Gateway

Communications Gateway (CGW)					
Power Consumption					
Maximum	10.2 Watts				
Typical	6.8 Watts				
Data Communications					
2 Ethernet ports - utility or rear side	Independent Ethernet ports 1000/100/10 Base-T Auto-negotiation				
Connector	RJ-45				
Cable Length	100 meters (328 feet) max				
Updated Rate					
Modbus	50 ms				
EDG	20 ms				
PROFINET	100 ms				
LEDs					
Module OK LED	Indicates when the module is functioning properly				
System Communication LED	Indicates when the module is communicating to the rest of the system				
Physical Characte	eristics				
Required Rack Space	1 Slot				
PROFINET Protocol					
Maximum Data Output to PLC	1408 bytes				
Output data types	Float (4 bytes), Integer (2 bytes), or single bytes (used for statuses)				
Data Input from PLC	Not currently supported				

Communications Gateway (CGW)

Setting IP address; Setting Name of Station; Flash LED command

Protection Processor Module

Protection Processor Module (PPM)					
Power Consumption					
Typical	6.1 Watts				
Maximum	9.7 Watts				
Channel Types					
 Acceleration Case Expansion Differential Expansion Dynamic Pressure Process Variable Radial Vibration Recip Cylinder Pressure Recip Impulse Acceleration Recip Piston Rod Recip Velocity Speed Temperature Thrust Valve Position Velocity 					
Measurements and Signal Processing					
1X/2X/nX Amplitude and Phase	In a complex vibration signal, notations for signal components having frequencies equal to fractions of rotative speed Also called subharmonic and subsynchronous.				
Amplitude Extraction	Amplitude Extraction measurements can be based on synchronous or asynchronous sampling.				

.....

Protection Pr	ocessor Module (PPM)		Protection Pr	ocessor Module (PPM)
Average Piston Position	This trended variable measures the average of the physical distance between the face of the proximity probe tip and the observed rod with respect to the zero position multiplied by the average correction factor. This measurement is computed over the full rotation of the compressor crankshaft. The system computes average piston position from a configured reference value (zero position) extrapolated from the measurement of the piston rod movement to piston movement inside the cylinder.	Case Expansion	A measurement of the axial position of the machine casing relative to a fixed reference, usually the foundation. The measurement is typically made with a Linear Variable Differential Transformer installed on the foundation at the opposite end of the machine from the point where the casing is attached to the foundation. Changes in casing axial position are the result of thermal expansion and contraction of the casing during startup and shutdown.	
Bandpass	Adjustable lowpass and highpass corners based on the frequency range of the transducer.			
Bias	Applicable to Acceleration and Velocity sensor inputs. The DC voltage used by the system as a bias for the transducer. Can be used as a diagnostic tool for evaluating system integrity. Note: The bias voltage measurement contains no information about the condition of the machinery being monitored. It is provided only for monitoring system diagnostics.			

Protection Pr	ocessor Module (PPM)		Protection Pr	ocessor Module (PPM)
Complimentary Input DE (Composite of Differential Expansion Channel measurements)	Image: System of the systemComplementary InputDut DEDifferential Expansionomposite of(CIDE) is a method ofofferentialmeasuring DifferentialpansionExpansion. Two proximityprobes are mounted and		Degrees of Rod Reversal	This measurement determines the minimum amount of rod load reversal required to properly lubricate the crosshead pin. Several forces such as gas load, inertial load, and friction load act upon the crosshead pin. When the gas load is positive, the crosshead pin is under tension, and when the gas load is negative, the crosshead pin is under tension. The degrees of rod reversal is the smaller value of tension or compression. The measurement of the axial position of the rotor with respect to the
		or o s ry on.	machine casing at some distance from the thrust bearing. Changes in axial position relative to the casing affect axial clearances and are usually the result of thermal expansion during startup and shutdown. The measurement is typically made with a proximity probe transducer	
Compression Ratio	This measurement is the ratio of the indicated discharge pressure to the indicated suction pressure.			mounted to the machine casing and observing an axial surface (e.g., collar) of the rotor.
Crank Angle	This trended variable measures the point in the crankshaft rotation where the maximum position magnitude occurs.			

Protection	Processor Module (PPM)	Protection P	rocessor Module (PPM)
Direct	Data or a signal which represents the original transducer signal without significant filtering. Sometimes called unfiltered, raw, all pass, or overall data or signal. Bently Nevada signal processing does some filtering to create "direct" data, but it still contains broadband frequency information.	Dual Ramp (Composite)	Dual Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. Two proximity probes observe different ramps. The two ramp sections
Discharge Pressure, Indicated	For the head-end chamber, the indicated pressure at TDC (top dead center at 0°) is the indicated discharge pressure. For crank end chamber, the indicated pressure at BDC (bottom dead center at 180°) is the indicated discharge pressure.		must be mirror images with the same ramp angle. The two probes mount on the same side of the rotor and in the same axial plane. The monitor uses the direct static values from both channels to measure axial position and compensate for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.
		Eccentricity	The radial displacement of the rotor journal centerline from the geometric center of a fluid lubricated bearing. Eccentricity is measured while the turbine is on slow roll (1 to 240 RPM below the speed at which the rotor becomes dynamic and rises in the bearing on the oil wedge) and requires special circuitry to detect the peak- to-peak motion of the shaft.

-

Protection Processor Module (PPM)			Protection Processor Module (PPN	
Gap	The physical distance between the face of a proximity probe tip and the observed surface. The distance can be		Integration/RMS	Available for Velocity and Acceleration channels to be applied to Direct, Bandpass, 1X, 2X, nX an SMAX measurements.
	expressed in terms of displacement (mils, micrometres), or in terms of voltage (millivolts). Standard polarity		Maximum Pressure, Indicated	The highest pressure over the complete revolution for a chamber. No filtering or other processing is applied.
Instantaneous	convention dictates that a decreasing gap results in an increasing (less negative) output signal. This trended variable	-	Minimum Pressure, Indicated	The lowest pressure over the complete revolution for a chamber. No filtering or other processing is applied.
Piston Position	measures the position of the rod with respect to the zero position times the correction factor when the rod is in its stroke position described by the configured trigger angle position.		Non-Standard Single Ramp DE (Composite)	Nonstandard Single Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion,
	The system computes the instantaneous piston position from the configured reference value (zero position) extrapolated from the measurement of the piston rod movement to piston movement inside the cylinder.			which make use of ramps to measure axial position. Two proximity probes observe the same ramp. The two probes are mounted on opposite sides of the rotor (180 degrees apart). The monitor uses the direct static values from both
Instantaneous Probe Gap	This trended variable measures the voltage representing the physical distance between the face of the proximity probe tip and the observed rod when it is in its stroke position described by the configured trigger angle position.			channels to measure axial position and compensate for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.

Protection Pr	ocessor Module (PPM)		Protection Pr	ocessor Module (PPM)
Number of Reverse Rotation	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, counting revolutions.	• -	Position Angle	This trended variable measures the angle made by the vector representation of the maximum position magnitude referenced
Pin Compression and Tensionload, inertial load, and friction load act upon the crosshead pin. When the gas load is positive, the crosshead pin is underrod in a cload direction wh from the cro towards the top of pistor identified as angle.				
	compression. Peak Crosshead Pin Tension is the largest value of the combined load of these forces when the crosshead pin is under tension. Peak Crosshead Pin Compression is the smallest value of the combined load when the			Position Angle provides an indication of the direction of rod movement relative to bore center. For a single vertical probe, this position angle will be 0° when piston rod is above bore center, or 180° when piston rod is below bore center.
Position	crosshead pin is under compression. Position has a variety of applications. For the Thrust and Differential Expansion it is the change	-	Position Magnitude This trended variable measures the maximum displacement of piston rod relative to the calculated hot bore cente reference.	
	in axial direction with respect to a fixed reference. Also used in Case Expansion to measure case growth and Valve Position to measure how open or closed a valve is.			The cylinder bore geometric center is calculated based on piston material, expected operating temperatures, and measured bottom and top piston to cylinder wall clearances.
			Process Variable	The Process Variable Channel accepts current and voltage proportional inputs from a transmitter for the purpose of

for the purpose of monitoring process variables (temperature, pressure, flow, etc.).

Protection Pr	rocessor Module (PPM)	Protection Pr	ocessor Module (PPM)
Reverse Peak Speed	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, storing the highest achieved reverse speed.	Standard Single Ramp DE (Composite)	Standard Single Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally tormed Pamp
Reverse Speed	Valid when the machine is spinning backwards. This measurement behaves like a typical speed measurement.		generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. One proximity probe, termed the ramp
Rotor Acceleration	Rotor acceleration is a ramp rate of a rotor (in rpm / min) as its speed increases from zero rpm to the machine's running speed value.		transducer, observes a ramp and the other probe, termed the flat transducer, observes the shaft. The two probes are mounted on the same side of the rotor and in the
Shaft Absolute	Shaft Absolute vibration is the measurement of the shaft motion referenced to free space. It is measured using a vector summation of shaft relative motion and bearing seismic motion. A proximity sensor and an integrated velocity sensor must be mounted at the same location. Shaft Absolute Direct and 1X measurements are available on Radial Vibration channels.		same axial plane. The ramp transducer measures axial position and the flat transducer measures radial position. The monitor uses the flat channel Direct static value to compensate the ramp channel Direct static value for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management
SMAX	Measurement of the maximum excursion from an axial position.		information.
Speed	Measurement of the rate of rotational motion.		

Protection Processor Module (PPM)		
Suction Pressure, Indicated	For the head-end chamber, the indicated pressure at BDC (bottom dead center at 180°) is the indicated suction pressure.	
	For crank end chamber, the indicated pressure at TDC (top dead center at 0°) is the indicated suction pressure.	
Valve Position	Measurement of the percentage open or closed of a valve.	
Zero Speed	A channel whose transducer is used to monitor the shaft rotational speed of a large rotor machine in revolutions per minute (under 100 rpm) below which the turning gear engagement can safely occur. Continuous shaft rotation during machine shutdown is imperative to prevent shaft bow that could lead to possible machine damage during startup. The channel receives a signal from a transducer whose output frequency is proportional to the speed of a rotor.	
Alarming		
Alarm Time Delays	100 ms to 60 sec for vibration and position measurements. 1 sec to 60 sec for speed measurements.	
Setpoints	Four setpoint levels available at a each measurement.	

Protection Processor Module (PPM)

Protection States	Up to 32 Protection States that be controlled by Discrete contacts or configurable measurement ranges. Alarm setpoints are adjustable for different Protection States.
	Protection States.

Accele	Acceleration Channel		
Direct/Bandpass			
Accuracy	Within ±0.33% of full-scale typical		
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz		
Integration	Option allowed		
Units	g pk		
	g rms		
	m/s^2 pk		
	m/s^2 rms		
Integrated Units	in/s pk		
	in/s rms		
	mm/s pk		
	mm/s rms		
Low Pass Poles	1, 2, 4, 6, 8		
Low Pass Corner	0.0626 - 40,000 Hz		
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.		
High Pass Poles	1, 2, 4, 6, 8		

-

Acceleration Channel		
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of 0.0625 to 39,999	
	y response of the er needs to be considered.	
Bias		
Units	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5.00 Hz	
1X and 2X (Defaul	t Variables)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz±2% maximum up to 40 kHz	
Accuracy	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
Integration	Option allowed	
Speed Ratio	0.00000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	

Acceleration Channel		
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additional Va	riable)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40kHz	
	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.00000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	

Maximum Speed

Acceleration Channel

Keyphasor source:

High Speed Keyphasor =

	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm
Amplitude Extrac	tion (Additional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Integration	Option allowed
Speed Ratio	0.00000001 - 20,000
	(up to 10 digits of resolution)
Spectral Lines	100, 200, 400, 800, 1600, 3200
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Number of Averages	Up to 128
Minimum Speed	50 rpm

Ļ	Accele	eration Channel
Maximum Speed		Keyphasor Source:
		High Speed keyphasor = 120,000 rpm
		Dynamic Sampled Input Module = 12,000 rpm
Center Frequency a Bandwidth	nd	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)
		Bandwidth ≥ 0
Co	ase Ex	pansion Channel
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum	
Position		
Units	V	
Direct	in	
	mm	
Composite (Addit	ional Variable)
Units	in	
	mm	

Differential Expansion Channel		
General Tab Pro	operties	
Probe Configuration	 Single Channel Differential Expansion Standard Single Ramp Differential Expansion Flat Section Standard Single Ramp Differential Expansion 	
	Differential Expansion Ramp Section	
	 Dual Ramp Non-Standard Single Ramp Differential Expansion 	
	6. Complementary Input Differential Expansion	
Options also ha Variabl Position and	ion Channel. s 2-6 require the channel to ve a Composite Trended e added per Channel pair. ditional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±2% maximum	
Units	in mm	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 – 5 Hz	
Gap		
Units	V	

Different	ial Expansion Channel
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 – 5 Hz
Bandpass (Add	itional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Unit	in
	mm
Low Pass Poles	1, 2, 4, 6, 8
Low Pass	0.0626 - 40,000 Hz
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8
High Pass	0.0626 to 40,000
Corner Frequency	(must be < LPF)
nX (Additional	Variable)
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz

Differer	ntial Expansion Channel	Dynami	c Pressure Channel
Accuracy	Keyphasor Source:	Dynamic	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module	Accuracy	Within ±0.33% of full-scale typical ±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
	Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	Accuracy (Phase)	Keyphasor Source: <u>High Speed Keyphasor</u> Within +/-1 degree
Integration	Option allowed		maximum up to 20 kHz Event Rate (Events Per Rev
Order	0.1 to 100 X; with precision of 0.1 x		* Running Speed in RPM / 60)
Speed Ratio	0.00000001 - 20,000		Dynamic Input Module
	(up to 10 digits of resolution)		Within +/-1 degree maximum up to 200 Hz
Minimum Speed	50 rpm		Event Rate (Events Per Rev * Running Speed in RPM / 60)
Maximum	Keyphasor source:	Units	psi pp
Speed	High Speed Keyphasor =	OTILS	psi dpp
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x		psi rms
	60,000 rpm,		mbar pp
	when 12.5x < n orders ≤ 25x		mbar dpp
	30,000 rpm, when 25x < n orders ≤ 50x		mbar rms
	15,000 rpm,	Low Pass Poles	1, 2, 4, 6, 8
	when 50x < n orders ≤ 100x	Low Pass Corner	0.0626 - 40,000 Hz
	Dynamic Input Module = Frequ		Must be greater than high
	12,000 rpm		pass frequency and below Upper Transducer Frequency Response.
		High Pass Poles	1, 2, 4, 6, 8

User can set values below

the low pass frequency. Range of .0625 to 39,999

High Pass Corner Frequency

Dynamic	Pressure Channel	Dynamic	Pressure Channel	
Frequenc	y response of the	1X and 2X (Defau	lt Variables)	
	er needs to be considered.	Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
Bias			±1% maximum up to 20 kHz	
Low Pass Poles	1, 2, 4, 6, 8		±2% maximum up to 40	
Low Pass Corner Frequency	0.01 – 5.00 Hz		kHz	
Bandpass		Accuracy (Phase)	Keyphasor Source:	
Accuracy	Within ±0.33% of full-scale typical ±1% maximum up to 20 kHz ±2% maximum up to 40	(Fildse)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	kHz		Dynamic Input Module	
Low Pass Poles Low Pass Corner Frequency	er 0.0626 - 40,000 Hz Must be greater than high pass frequency and below Upper Transducer		Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
		Speed Ratio	0.00000001 - 20,000	
High Pass Poles	Frequency Response. 1, 2, 4, 6, 8		(up to 10 digits of resolution)	
High Pass Corner	User can set values below	Minimum Speed	50 rpm	
Frequency	the low pass frequency.	Maximum Speed	Keyphasor Source:	
Frequenc	Range of 0.0625 to 39,999 Frequency response of the		High Speed keyphasor = 120,000 rpm	
	er needs to be considered.		Dynamic Sampled Input Module = 12,000 rpm	
		nX (Additional Vo	ariable)	
		Accuracy (Amplitude)	Within ±0.33% of full-scale typical	

±1% maximum up to 20 kHz

±2% maximum up to 40

kHz

Dynamic	Pressure Channel		
Accuracy	Keyphasor Source:	-	Spe
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM /	-	Spe
	60) Dynamic Input Module		Fred (As
	Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev	-	Sar (Syl
	* Running Speed in RPM / 60)		Nur (Syı
Order	0.1 to 100 X; with precision of 0.1 x	_	Nur Ave
Minimum Speed	50 rpm	-	Min
Maximum Speed	Keyphasor source:	-	Max
	<u>High Speed Keyphasor =</u>		ivio,
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x		
	60,000 rpm, when 12.5x < n orders ≤ 25x		
	30,000 rpm, when 25x < n orders ≤ 50x		Cer Frea
	15,000 rpm, when 50x < n orders ≤ 100x		Bar
	<u>Dynamic Input Module =</u>		
	12,000 rpm		
Amplitude Extrac	tion (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	-	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz		Acc

Dyr	Dynamic Pressure Channel		
Speed Ratio		0.00000001 - 20,000	
		(up to 10 digits of resolution)	
Spectral Lines		100, 200, 400, 800, 1600, 3200	
Frequency Sj (Asynchronc		10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz	
Samples Per (Synchronou		8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
Number Of R (Synchronou		1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
Number of Averages		Up to 128	
Minimum Sp	eed	50 rpm	
Maximum Speed		Keyphasor Source:	
		High Speed keyphasor = 120,000 rpm	
		Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth		Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling) Bandwidth ≥ 0	
	Proc	cess Variable	
Accuracy	With typic	in ±0.33% of full-scale al	
±1% n		naximum	

Process Variable			
Input Options	4 - 20 mA 1 - 5 V 0 - 10 V -10 - 10 V		
Output Options	Custom units accepted. Upper and Lower Limits must be within 100,000 units of each other.		
Rc	idial Vibration Channel		
Direct/Band	pass		
Accuracy	Within ±0.33% of full-scale typical		
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz		
Units	mil pp		
	μmpp		
Low Pass Poles	1, 2, 4, 6, 8		
Low Pass Corner Frequency	0.1 - 40,000 Hz; increments of 0.1 Hz (should be greater than 10 times High Pass Frequency)		
High Pass Poles	1, 2, 4, 6, 8		
High Pass Corner Frequency	0.1 - 40,000 Hz; increments of 0.1 Hz (should be less than 1/10 of Low Pass Frequency)		
Gap			
Units	Units V		
Low Pass Poles	1, 2, 4, 6, 8		
Low Pass Corner Frequency	0.01 – 5.00 Hz		

Radial Vibration Channel

1X, 2X, SMAX			
1X/2X Accuracy (Amplitude)	Within ±0.33% of full-scale typical		
(±1% maximum up to 20 kHz ±2% maximum up to 40 kHz		
Accuracy (Phase)	Keyphasor Source:		
(FIUSE)	<u>High Speed Keyphasor</u> Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev *		
	Running Speed in RPM / 60)		
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)		
SMAX Accuracy	Within ±5% of full-scale		
Speed Ratio	0.00000001 - 20,000		
	(up to 10 digits of resolution)		
Minimum Speed	50 rpm		
Maximum	Keyphasor Source:		
Speed	High Speed keyphasor = 120,000 rpm		
	Dynamic Sampled Input Module = 12,000 rpm		
nX			
Accuracy (Amplitude)	Within ±0.33% of full-scale typical		
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz		

Radial Vibration Channel			Radial Vibration Channel		
Accuracy (Phase)	Keyphasor Source:		Samples Per Rev (Sync.)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz		Number Of Revs (Sync.)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
	Event Rate (Events Per Rev * Running Speed in RPM / 60)		Frequency Span (Async.)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz	
	Dynamic Input Module Within +/-1 degree maximum		Spectral Lines	100, 200, 400, 800, 1600, 3200	
	up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)		Number of Averages	Up to 128	
Order	0.1 to 100x; increments of 0.1x	Minimum Speed		50 rpm	
Speed Ratio	0.00000001 - 20,000	.000000001 – 20,000		Keyphasor Source:	
			Maximum Speed	High Speed keyphasor =	
Minimum Speed				120,000 rpm	
Maximum Speed	Keyphasor source:			Dynamic Sampled Input Module = 12,000 rpm	
speed			•		
	when $0.1x \le n$ orders $\le 12.5x$		Center Frequency and	Configurable over the supported spectral range (up to 40 kHz for Asychronous or	
	60,000 rpm, when 12.5x < n orders ≤ 25x		Bandwidth	up to 1600X for Synchronous sampling)	
	30,000 rpm, when 25x < n orders ≤ 50x			Bandwidth ≥ 0	
	15,000 rpm,		Shaft Absolute - Direct		
	when $50x < n$ orders $\le 100x$	Accuracy (Amplitude)		Within ±0.33% of full-scale	
	Dynamic Input Module =			typical	
	12,000 rpm			±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Amplitude Ext	traction			1	
Accuracy	Within ±0.33% of full-scale typical				

±1% maximum up to 20 kHz ±2% maximum up to 40 kHz

(up to 10 digits of resolution)

0.00000001 - 20,000

Speed Ratio

Rac	dial Vibration Channel		Rac	dial Vibration Channel
Accuracy (Phase)	Keyphasor Source: <u>High Speed Keyphasor</u> Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	Maximum Speed		Keyphasor Source: High Speed keyphasor = 120,000 rpm Dynamic Sampled Input Module = 12,000 rpm
	Dynamic Input Module	Eccentricity Peak to Peak / Direct		
	Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running		Low Pass Poles	1
Low Pass Poles	Speed in RPM / 60) 1, 2, 4, 6, 8		Low Pass Corner Frequency	0.41 Hz
Low Pass Corner	0.0626 - 40,000 Hz; increments of 0.1 Hz		Eccentricity Poles	1
Frequency (should be greater than 10 times High Pass Frequency)		Eccentricity Corner	15.6 Hz	
High Pass Poles	1, 2, 4, 6, 8		Frequency	
High Pass Corner	User can set values below the low pass frequency.			
Frequency	Range of .0625 to 39,999			
Shaft Absolut	e - 1X			
Accuracy	Within ±0.33% of full-scale typical			
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz			
Speed Ratio	0.00000001 - 20,000			
	(up to 10 digits of resolution)			
Minimum Speed	50 rpm			

_

Speed Channel			Speed Channel	
Speed	Speed		Units	rpm
Speed/Frequency	KPH modules:			cpm
Signal Accuracy	0.017 to 100 rpm: ±0.1 rpm			Hz
	101 to 10,000 rpm: ±100 rpm		Gap	
	10,001 to 120,000 rpm: ±0.01% of actual		Low Pass Corner Frequency	0.01 – 5Hz
	rotational speed		Low Pass Poles	1, 2, 4, 6, 8
	PAV/PAA/PAS/PAD/PVT modules:		Reverse Speed	
	1 to 100 ppm: ±0.1 rpm		Accuracy	Refer to Speed/Frequency Signal Accuracy
	101 to 5000 ppm: ±1 rpm		Top Scale	KPH modules:
	(within 3 seconds) 5001 to 12,000 ppm: ±15 rpm (within 3 seconds)			Must be between 50 and 120,000 rpm, inclusive
	<u>Definitions</u>			PAV/PAA/PAS/PAD/PVT modules:
	ppm = Pulses Per Minute			Must be between 50 and 12,000 rpm, inclusive
	ppm = EPR * RPM	* RPM Units	rpm	
	EPR = Events Per Revolution			cpm
	"Within 3 seconds" = At			Hz
	higher ppms, the system		Speed Ratio	0.00005 - 20,000
	requires time to settle to the designated accuracy specifications			(up to 10 digits of resolution)
Top Scale	KPH modules:		Speed Hysteresis	0 to 10
	Must be between 50 and 120,000 rpm, inclusive		% Difference	1 to 10%
	PAV/PAA/PAS/PAD/PVT modules:			
	Must be between 50 and 12,000 rpm, inclusive			

Speed Channel			
Reverse Peak Speed			
Measurement requires 2 transducers.			
Accuracy	Refer to Speed/Frequency Signal Accuracy		
Top Scale	KPH modules:		
	Must be between 50 and 120,000 rpm, inclusive		
	PAV/PAA/PAS/PAD/PVT modules:		
	Must be between 50 and 12,000 rpm, inclusive		
Units	rpm		
	cpm		
	Hz		
Speed Ratio	0.00005 – 20,000		
	(up to 10 digits of resolution)		
Speed Hysteresis	0 to 10		
% Difference	1 to 10%		
Number of Re	everse Rotations		
Top Scale	Bottom Scale < Top Scale < = 20,000		
Speed Ratio	0.00005 to 20,000		
	(must support up to 10 digits of precision)		
Speed Hysteresis	0 to 10		
% Difference	1 to 10%		
Rotor Accele	ration		
Accuracy	±20 rpm/min		
Top Scale	100 to 9,999 (rpm/min)		

Speed Channel		
Bottom Scale	-9,999 to -100 (rpm/min)	
Unit	rpm/min	
	cpm/min	
	Hz/min (rpm/min)	
Speed Ratio	0.00005 – 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	1 to 120,000	
Peak Speed		
Accuracy	Refer to Speed/Frequency Signal Accuracy	
Top Scale	KPH modules:	
	Must be between 50 and 120,000 rpm, inclusive	
	PAV/PAA/PAS/PAD/PVT modules:	
	Must be between 50 and 12,000 rpm, inclusive	
Units	rpm	
	cpm	
	Hz	
Speed Ratio	0.00005 – 20,000	
	(up to 10 digits of resolution)	
Clamp Signal Below 1 rpm	Option allowed	
Minimum Speed	1 to 120,000	
Zero Speed		
Measurement requires 2 transducers.		

Speed Channel		
Accuracy	Refer to Speed/Frequency Signal Accuracy	
Top Scale	10.0 to 99.9 rpm	
Units	rpm	
	cpm	
	Hz	
Second Transducer Source	Lists all available speed channels configured in system	
Speed Ratio	0.00005 – 20,000	
	(up to 10 digits of resolution)	
Clamp Signal Below 1 rpm	Option allowed	
% Difference	1 to 10%	

Temperature Channel	
Direct	
Accuracy	Within ±1 degree typical
	±3 degrees maximum
Units	٥F
	°C
Temperature Range	-200C - 1370C depending on TC/RTD selection
Thrust Channel	

Thrust Channel	
Position	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum
Unit	mil, mm

	Thrust Channel	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5Hz	
Gap		
Unit	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01-5Hz	
Bandpass (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	mil pp	
	μmpp	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass	0.0626 - 40,000 Hz	
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass	0.0626 to 40,000	
Corner Frequency	(must be < LPF)	

Thrust Channel		
Amplitude Extraction (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	mil pp	
	μmpp	
Speed Ratio	0.00000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum	Keyphasor Source:	
Speed	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additiona	ll Variable)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Accuracy	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	Dynamic Input Module	
	Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	

μm pp

	107101021001.0
	Thrust Channel
Speed Ratio	0.00000001 - 20,000
	(up to 10 digits of resolution)
Order	0.1 to 100 X; with precision of 0.1x
Minimum Speed	50 rpm
Maximum	Keyphasor source:
Speed	High Speed Keyphasor =
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	Dynamic Input Module =
	12,000 rpm
Spectral Ban	d (Additional Variable)
	mil nn

Spectral Band (Additional Variable)		
Unit	mil pp	
	μm pp	
Speed Ratio	0.00000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum	Keyphasor Source:	
Speed	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	

137M5182 Rev. U

V	Valve Position Channel	
Valve Position - Position		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum	
Units	% Open	
	% Closed	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 – 5.00 Hz	
Valve Position - Direct (Default)		
Accuracy	Within ±0.33% of full-scale typical	
±1% maximum		
Units	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 – 5.00 Hz	

Velocity Channel	
Direct/Bandpass	
Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Integration	Option allowed
Units	in/s pk
	in/s rms
	mm/s pk
	mm/s rms

Velocity Channel		
Integrated Units	mil pp	
-	μmpp	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner	0.0626 - 40,000 Hz	
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of .0625 to 39,999	
Frequency response of the transducer needs to be considered.		
Bias		

Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 – 5.00 Hz
1X and 2X	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±2% maximum

137M5182 Rev. U

Velocity Channel		Vel	ocity Channel
Vel Accuracy (Phase)	Keyphasor Source: High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev	Vel Accuracy (Phase)	Ocity ChannelKeyphasor Source:High Speed KeyphasorWithin +/-1 degreemaximum up to 20 kHzEvent Rate (Events Per Rev* Running Speed in RPM /60)Dynamic Input ModuleWithin +/-1 degreemaximum up to 200 HzEvent Rate (Events Per Rev* Running Speed in RPM /
Integration	60) Option allowed	Integration	60) Option allowed
Speed Ratio	0.000000001 - 20,000 (up to 10 digits of	Order	0.1 to 100 X; with precision of 0.1 x
	resolution)	Speed Ratio	0.00000001 - 20,000
Minimum Speed	50 rpm		(up to 10 digits of resolution)
Maximum Speed	<u>Keyphasor Source:</u> High Speed keyphasor = 120,000 rpm	Minimum Speed	50 rpm
		Maximum Speed	Keyphasor source:
	Dynamic Sampled Input		High Speed Keyphasor =
	Module = 12,000 rpm		120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
nX (Additional Variable)			60,000 rpm,
Accuracy (Amplitude)	Within ±0.33% of full-scale typical		when 12.5x < n orders ≤ 25x 30,000 rpm, when 25x < n orders ≤ 50x
	±2% maximum		15,000 rpm, when 50x < n orders ≤ 100x
			Dynamic Input Module =

12,000 rpm

-

Velocity Channel		
Amplitude Extraction (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±2% maximum	
Integration	Option allowed	
Speed Ratio	0.00000001 - 20,000	
	(up to 10 digits of resolution)	
Spectral Lines	100, 200, 400, 800, 1600, 3200	
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz	
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
lumber Of Revs Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
lumber of verages	Up to 128	
linimum Speed	50 rpm	
aximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)	

Recip Impulse Acceleration Channel		
Direct		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz	
	±2% maximum up to 40 kHz	
Integration	Not allowed	
Units	g pk	
	g rms	
	m/s² pk	
	m/s² rms	
Low Pass Poles	4	
Low Pass Corner	30 to 40,000 Hz when subunit is not RMS	
Frequency	40 to 40,000 Hz when subunit is RMS	
	Low Pass Corner Frequency must be greater than or equal to (High Pass Corner Frequency * 4).	
	Low Pass Corner Frequency must be greater than High Pass Corner Frequency.	
	Bently Nevada recommends Low Pass Corner Frequency to be less than or equal to Upper Frequency Response.	
High Pass Poles	4	
High Pass Corner	3 to 3,000 Hz when subunit is not RMS	
Frequency	10 to 3,000 Hz when subunit is RMS	
Bias		
Units	V	

Low Pass 1	
Poles	
Low Pass 0.01 - 5.00 Hz Corner Frequency	
Recip Piston Rod Channe	el 👘
Peak-Peak Displacement	
Accuracy Within ±0.33% of full-s typical	scale
±1% maximum up to 2	20 kHz
±2% maximum up to	40 kHz
Integration Not allowed	
Units mil pp	
μm pp	
Low Pass 2 Poles	
Low Pass 600 Hz Corner Frequency	
High Pass 2 Poles	
High Pass 1 Hz Corner Frequency	
Position Magnitude	
Accuracy Within ±1 % of the lower configurable full-scal	
Integration Not allowed	
Units mil	
μm	
Speed Ratio 0.00005 to 20,000	
(up to 10 digits of resc	olution)

Red	cip Piston Rod Channel
Minimum Speed	If (50 / Speed Ratio < 1): 1
	Otherwise: 50 / MultiEventRatio
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm
Position Ang	le
Accuracy	Within ±3°
Integration	Not allowed
Units	Degrees
Speed Ratio	0.00005 to 20,000
1	(up to 10 digits of resolution)
Minimum	If (50 / Speed Ratio < 1): 1
Speed	Otherwise: 50 / MultiEventRatio
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm
Crank Angle	'
Accuracy	Within ±3°
Integration	Not allowed
Units	Degrees
Speed Ratio	0.00005 to 20,000
	(up to 10 digits of resolution)
Minimum	If (50 / Speed Ratio < 1): 1
Speed	Otherwise: 50 / MultiEventRatio

Red	cip Piston Rod Channel		
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm	N	Л
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm	_	
Gap			n
Accuracy	Within ±1 %		40
Units	V	L	Jr
Low Pass Poles	1	S	sþ
Low Pass Corner Frequency	0.09 Hz		vi Sp
Average Pist	on Position	N	Л
Accuracy	Within ±1 %	-	
Units	mil	-	
	μm	_	
Low Pass Poles	1		
Low Pass Corner Frequency	0.09 Hz		Di Ad
Instantaneo	us Piston Position	-	
Accuracy	Within ±1%	L	Jı
Units	mil	I	
	μm		20
Speed Ratio	0.00005 to 20,000		.c
	(up to 10 digits of resolution)		C Fr
Minimum	If (50 / Speed Ratio < 1): 1	-	
Speed	Otherwise: 50 / MultiEventRatio	S	5

Recip Piston Rod Channel

Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm

Instantaneous Probe Gap

Accuracy	Within ±1%
Units	V
Speed Ratio	0.00005 to 20,000
	(up to 10 digits of resolution)
Minimum	If (50 / Speed Ratio < 1): 1
Speed	Otherwise: 50 / MultiEventRatio
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm

Recip Cylinder Pressure		
Discharge P	ressure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm ² (g)	
Low Pass Poles	2, 4, 6, 8	
Low Pass Corner Frequency	15X to (SamplesPerRev/2.56)X (specified in orders of the	
running speed) Suction Pressure, Indicated		
Accuracy	Within ±1% of the configured top scale	

Recip Cylinder Pressure		
Units	psi (g), bar (g), kPa (g), kgf/cm²(g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Maximum P	ressure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm²(g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Minimum Pr	essure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm²(g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Compression Ratio		
Accuracy	Within ±2% of the configured top scale	
Units	N/A	

_

Recip Cylinder Pressure		
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Peak Crossh	ead Pin Compression	
Units	lbf or kN	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Peak Crossh	ead Pin Tension	
Units	lbf or kN	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Degrees of R	od Reversal	
Units	Degrees	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	

Recip Velocity		
Direct		
Units	If integration is false: in/s pk, mm/s pk, in/s rms, mm/s rms	
	lf integration is true: mil pp, mil rms, μm pp, μm rms	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass	Peak: 10 Hz to 5,500 Hz	
Corner Frequency	RMS: 15 to 5,500 Hz	
High Pass Poles	1, 2, 4, 6, 8	
High Pass	Peak: 0.75 Hz to 400 Hz	
Corner Frequency	RMS: 0.75 Hz to 400 Hz	
Bias		
Units	V	
Low Pass Poles	1	
Low Pass Corner Frequency	0.01 Hz to 5.00 Hz	
1X		
Units	in/s pk, mm/s pk, in/s drms, mm/s drms	
2X	· 	
Units	in/s pk, mm/s pk, in/s drms, mm/s drms	
Bandpass		
Units	If integration is false: in/s pk, mm/s pk, in/s rms, mm/s rms	
	If integration is true: mil pp, mil rms, μm pp, μm rms	
Low Pass Poles	1, 2, 4, 6, 8	

_

Recip Velocity		
Low Pass Corner Frequency	Peak: 10 Hz to 5,500 Hz RMS: 15 to 5,500 Hz	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	Peak: 0.75 Hz to 400 Hz RMS: 0.75 Hz to 400 Hz	

Condition Monitoring Module

Condition Monitoring Module (CMM)		
Power Consumption		
Maximum	14.2 W	
Typical	10.5 W	
Data Commun	ications	
2 Ethernet ports - utility or rear side	Independent Ethernet ports 1000/100/10 Base-T Auto- negotiation	
Connector	RJ-45	
Cable Length	100 meters (328 feet) max	
LEDs		
Module OK LED	Indicates when the module is functioning properly	
LINK LED	indicates when the module is communicating to the rest of the system	
Physical		
Required Rack Space	2 Slots	

Power Input Module

Power Input Module (PIM)		
Electrical		
Voltage Input	+21 to +32 Vdc	
Current Draw		
3U 19" full load	7.1 Amps @ 24 Vdc	
6U 19" full load	10.5 Amps @ 24 Vdc	
Out of Range Protection	An undervoltage does not harm the PIM. An overvoltage causes the fuse to open.	
Physical		
Width	0.8" (2.03 cm)	
Height	5.2" (13.21 cm)	
Depth	9.67" (24.56 cm)	

Bridge

Bridge Module (BRG)	
Communications	
1 Fiber Optic Port for Bridge-to- Bridge Connection	10 Gbps – Single Mode, OS1/OS2 fiber required
Connector	LC Duplex
Supported Connections	Bridge-to-Bridge (point-to- point) ONLY, Network equipment such as switches, routers, and repeaters are not supported, proprietary protocol
Cable Length	2,000 meters (6,560 feet) max
Maximum Cable Signal Attenuation	6 db max

137M5182 Rev. U

Bridge Module (BRG)		
Bridge Modules LED Indicators		
Module OK LED	Indicates the operational status of the module.	
Link LED	Indicates communication status for the module to the rest of its chassis	
Bridge LED (Utility Side)	Indicates bridge-to-bridge connection status.	
Physical Characteristics		
Required Rack Space	1 Slot	
Power Consumption		
Typical	8.7 Watts	
Maximum	11.3 Watts	

Dynamic Input Modules

Dynamic Input Modules		
(-) (Prox, Accel, Velom)		
(-) (Prox, Accel, Seismic)		
(-) (Prox, Accel, Aero)		
(-) (Prox, Accel, DC LVDT)		
(+) (Prox, Accel, Velom)		
Speed and Keyphasor		
1 - 12,000 ppm (pulses per minute)		
Keyphasor Pulse Width must be greater than or equal to 10 micro- seconds.		
Power Consumption		
11 W		

Dyna	imic Input Modules	Dynar	mic Input Modules
Typical	7.5 W	PVT	Prox/Accel (3-wire)
(All Modules)			0-40 kHz 1% of Full Scale
Accuracy and F	requency Response		Velom (2-wire)
PAV	Prox/Accel (3-wire)		5 Hz - 20 kHz 1% of Full Scale
	0-40 kHz 1% of Full Scale		Recommended top scal
	Velom (2-wire)		= 1 in/s to meet 1%
	5 Hz - 20 kHz 1% of Full Scale		accuracy 20-40 kHz 2% of Full Scal
	Recommended top scale = 1 in/s to meet 1%	Dynamic Inputs	
	accuracy	Analog Input	See Input Module Senso and Channels on page 2
	20-40 kHz 2% of Full Scale	Channels	4 Dynamic Inputs
PAS	Prox/Accel (3-wire)	Supported	, ,
		Sampling Rate	102.4 kHz
	Seismic (2-wire)	Input Interface I	mpedance (Typical)
	5 Hz - 20 kHz 1% of Full Scale	PAV	Prox/Accel (3-wire)
	20-40 kHz 2% of Full Scale		10 kΩ
ΡΑΑ	Prox/Accel (3-wire)	PAS	Prox/Accel (3-wire)
	0-40 kHz 1% of Full Scale		10 kΩ
	Aero (4-wire)		Seismic (2-wire)
	5 Hz – 20 kHz 1% of Full		10 kΩ
	Scale	ΡΑΑ	Prox/Accel (3-wire)
	20-40 kHz 2% of Full Scale		10 kΩ
PAD	Prox/Accel (3-wire)		Aero (4-wire)
	0-40 kHz 1% of Full Scale		100 kΩ
	DC LVDT (4-wire)	PAD	Prox/Accel (3-wire)
	5 Hz - 20 kHz 1% of Full Scale		10 κΩ
	20-40 kHz 2% of Full Scale		DC LVDT (4-wire)
			1 ΜΩ

Dynam	ic Input Modules	Dyna
PVT	Prox/Accel (3-wire)	BTO Accuracy
	10 kΩ	
Input Interface Sig	gnal Range [V]	
PAV	Prox/Accel (3-wire)	
	Min22, Max. 0	
	Velom (2-wire)	
	Min24, Max2	
PAS	Prox/Accel (3-wire)	
	Min22, Max. 0	
	Seismic (2-wire)	
	Min14, Max. 0	BTO Output
PAA	Prox/Accel (3-wire)	Impedance
	Min22, Max. 0	BTO Connector
	Aero (4-wire)	
	Min22, Max. 0	
PAD	Prox/Accel (3-wire)	This is a input, no
	Min22, Max. 0	reconst signal.S
	DC LVDT (4-wire)	offset B
	Min10, Max. 10	
PVT	Prox/Accel (3-wire)	Transducer Pow
	Min. 0, Max. 24	PAV
	Velom (2-wire)	
	Min. 2, Max. 24	
Outputs		
Analog Buffered Transducer (BTO)	Short circuit protected output signal available through BTO connector on	PAS
	public and utility side.	ΡΑΑ

137M5182 Rev. U

Dynamic Input Modules		
BTO Accuracy	AC > 0 to < 10 kHz, ±1% of input signal 10 kHz to < 20 kHz, ±2% of input signal 20 kHz to < 30 kHz, ±4% of input signal 30 kHz to ≤ 40 kHz, ±6% of input signal DC ±100 mV over voltage range of Input Module	
BTO Output Impedance	500 Ω	
BTO Connector		
This is a true analog signal from the input, not digital to analog reconstitution of the input signal.Some Transducers have an offset BTO bias.		
Transducer Power		
PAV	Prox/Accel (3-wire) -24 VDC, Max. 40 mA Velom (2-wire) 3.3 mA (Constant current)	
PAS	Prox/Accel (3-wire) -24 VDC, Max. 40 mA	
ΡΑΑ	Prox/Accel (3-wire) -24 VDC, Max. 40 mA Aero (4-wire) -24 VDC, Max. 40 mA	

Dynamic Input Modules	
PAD	Prox/Accel (3-wire)
	-24 VDC, Max. 40 mA
	DC LVDT (4-wire)
	-10 to 10 VDC, max. 40 mA
PVT	Prox/Accel (3-wire)
	24 VDC, Max. 33 mA
	Velom (2-wire)
	9.5 mA (Typical)
LEDs	
Channel Status LED (Rear Utility side only)	1 per input channel indicates when the connected sensor is in an OK condition
Module OK LED	Indicates when the module is functioning properly
System Communication LED	indicates when the module is communicating to the rest of the system
Physical	
Required Rack Space	1 Slot

Keyphasor Input Module

Keyphasor Module Inputs (KPH)	
Inputs	
Analog Input	 Proximitor (3-wire) Accelerometer (3-wire) Proximitor Keyphasor (3-wire) Magnetic Speed Pickups

	13/M5182 Rev. U	
Keyphasor Module Inputs (KPH)		
Signal Conditioning		
Speed / Frequency Signal Ranges	Input range of 1 to 120,000 cpm (0.017 to 2 kHz).	
Non-Speed Dynamic Input Specifications		
Analog Input	See Input Module Sensors and Channels on page 22.	
Channels Supported	4 Dynamic Inputs	
Sampling Rate	102.4 kHz	
Accuracy and Frequency Response		
КРН	Prox/Accel (3-wire)	
	0-40 kHz 2% of Full Scale	
Outputs		
Analog Buffered Transducer (BTO)	Short circuit protected output signal available through BTO connector on public and utility side.	
BTO Accuracy	AC	
	> 0 to < 10 kHz, ±1% of input signal	
	10 kHz to < 20 kHz, ±2% of input signal	
	20 kHz to < 30 kHz, ±4% of input signal	
	30 kHz to ≤ 40 kHz, ±6% of input signal	
	DC	
	±100 mV over voltage range of Input Module	
BTO Output Impedance	500 Ω	

Keyphasor Module Inputs (KPH)

BTO Connector

When configured as an analog output, this is a true analog signal from the input and not a digital to analog reconstitution of the input signal. When configured as a processed output, this is a 5 V or 3.3 V compatible TTL signal with the same machine speed and phase as the input signal. Some Transducers have an offset BTO bias.

Keyphasor Transducer Power Supply -24 Vdc, 40 mA maximum per channel.

LEDs

Channel Status LED (Rear Utility side only)	l per input channel indicates when the connector sensor is in an OK condition
Module OK LED	Indicates when the module is functioning properly
LINK LED	indicates when the module is communicating to the rest of the system
Physical	
Required Rack Space	1 Slot

AC LVDT

Module Inputs		
Channels	4 differential AC signals from AC LVDT	
Power Consumption	5.7 W typical, 10 W maximum	

TC/RTD Temperature

Temperature			
Thermocouple (TC) Temperature			
Thermocouple	Туре Ј, К, Е, Т		
Channel Supported	6		
RTD Temperature			
RTD Type	Pt100 (385), Pt100 (392), Ni120, Cu10		
Platinum RTD's with 0.00385 alphas are the worldwide industrial standard and are recommended for all applications.			
Power Consumption			

Maximum	6 W	
Typical	3 W	
LEDs		
Channel Status LED ^(Rear Utility Side)	l per unit channel indicates when the connected sensor is in an OK condition	
Module OK LED	Indicates when the module is functioning properly	
System Communication LED	Indicates when the module is communicating to the rest of the system	
Physical Characteristics		
Required Rack Space	1 Slot	

Recorder Output Module			Recorder Outputs		
Recorder Outputs			Output Characteristics		
Power Consumption		Się	gnal Output	Value is proportional to	
Typical	6 Watts			full-scale range defined for the	
Maximum	11 Watts			measurement	
Front Panel LEDs				scaled over the configured	
Module OK LED	Indicates when the module is functioning properly	Cl	amp Output	A user- configured output level	
Channel OK LEDs	Indicates when the recorder channels are functioning properly			used to indicate an invalid status of the associated measurement or a detected	
Outputs				fault within the	
Output Types	4 to 20 mA range across load			Recorder channel or wiring.	
	1 to 5 V range		4 mA to 20 mA Output Type		
	across load	Ro	ange	4 to 20 mA	
	0 to 10 V range across load			range across load	
Signal Load for Current Output	600Ω or lower			When configured for a 4-20 mA	
Signal Load of Voltage Output	100 k Ω or higher			output, the recorder	
Maximum Current Load	22 mA			channel supports the	
Short Circuit Protection	A short circuit on any recorder output will not impact adjacent recorder outputs.			extended output range of 3.8 mA to 20.5 mA to align with the NAMUR NE43 standard.	
Maximum Output error	1% of signal				

output range

Recorder Outputs		
Lower limit	4 mA (If measurement < bottom- scale, analog output limited to 3.8 mA minimum)	
Upper limit	20 mA (If measurement > top-scale, analog output limited to 20.5 mA maximum)	
Clamp Options	2 mA, 22 mA, or any level within the 4 mA to 20 mA output range	
Voltage range	0 to 12 Vdc	
1 V to 5 V Output	Туре	
Range	1 to 5 V range across load	
Lower limit	1 V (If measurement < bottom- scale, analog output limited to 1 V minimum)	
Upper limit	5 V (If measurement > top-scale, analog output limited to 5 V maximum)	
Clamp Options	0.5 V or any level within the 1 V to 5 V range	
0 V to 10 V Output	туре	
Range	0 to 10 V range across load	

Recorder Outputs		
Lower limit	0 V (If measurement < bottom- scale, analog output limited to 0 V minimum)	
Upper limit	10 V (If measurement > top-scale, analog output limited to 10 V maximum)	
Clamp Options	Any level within the 0 V to 10 V range	

Isolated Process Variable / Discrete Input (PVD)

Isolated PV / Discrete Input (PVD)				
Power Cons	Power Consumption			
Typical	4.5 W			
Maximum	6.5 W			
Characteris	tics			
Channels	6			
Isolation	500 V Channel to System and 250 V Channel to Channel isolation			
Process Variable 4-20 mA Input				
Process Variable Input (Current)	4 to 20 mA			
Process Variable Input (Voltage)	-10 to 10 Vdc 0 to 10 Vdc 2 to 10 Vdc 0 to 5 Vdc 1 to 5 Vdc -10 to 0 Vdc			

Discrete	Input
	mpac

Discrete Input	Dry Contact, Internally Wetted	
	Wetted Contact, 0 to 10 Vdc	

Electromagnetic Relay (EMR)

Electromagnetic Relay (EMR)				
Power Consump	Power Consumption			
Typical	6 watts			
Maximum	11 watts			
Characteristics				
Туре		echanical Single- ble-Throw		
Number of Relay Outputs	8			
Environmental	Epoxy Sealed			
Operation	for Norm	iy is configurable ally De-Energized Illy Energized		
Contact Rating for Standard Systems				
Minimum Switched Current		100 mA		
DC Maximum Switched Current		4 A @ 30 Vdc		
DC Minimum Switched Voltage		5 Vdc		
DC Maximum Switched Voltage		30 Vdc		
AC Maximum Switched Voltage		250 Vrms		
AC Maximum Switched Current		4 A		

Electromagnetic Relay (EMR)	
-----------------------------	--

Maximum Switched Power	180 W or 1800 VA

Contact Rating for Hazardous Area Systems

Maximum Switched Current	4 A
DC Maximum Switched Voltage	30 Vdc
AC Maximum Switched Voltage	160 Vrms

Solid State Relay (SSR)

Solid State Relay (SSR)		
Power Consumption		
Typical	5 watts	
Maximum	9 watts	
Characteristics		
Туре	Solid Stat Double-T	e Single-Pole, hrow
Number of Relay Outputs	8	
Environmental	Plastic Encapsulated	
Arc Suppressor	150 Vdc, installed standard	
Maximum Cycling Rate	1 Hz	
Operation	Each relay is configurable for Normally De-Energized or Normally Energized	
Switching Properties	Limited to non-inductive loads	
Contact Rating for Standard Systems		
Current Range		0.0 1-125 mA

Solid State Relay (SSR)		
DC Maximum Switched Current	125 mA @ 125 Vdc	
Voltage Range	1-125 Vdc	
Maximum Switched Power	650 mW	
Contact Rating for Hazardous Area Systems		
Current Range	0.0 1-125 mA	
Voltage Range	1-50 Vdc	

10.4" Hazardous Area Display

10.4" Hazardous Area Display		
Part Number	120M8155-01	
Warranty	1 Year	
Features		
Video Interface	VGA	
Touch Screen Type	Resistive Touch Screen	
Cable Interface	Serial	
Control Settings	Front panel button	
Mounting Styles	Panel Mount, 19" EIA Rack Mount, and Independent Mount	
Power		
Voltage	24 Vdc nominal voltage range 10 to 28 Vdc	
Operating Current	Less than 500 mA	

10.4" Hazardous Area Display		
Physical Characteristics		
Dimensions	15.25 x 9.8 x 1.93 in (387.4 x 248.9 x 49 mm)	
Environmental Limits - Indoor Use Only		
IP Rating	Designed for IP54 ingress protection against dust and water spray to the front only.	
Operating Temperature	-20 to 65°C (-4 to 149°F)	
Standards and Certifications		

Refer to External Display Datasheet (154M8401)

15" Hazardous Area Display

15" Hazardous Location Display (for Class 1 Div 2) CSA/NRTL/C		
Part Number	102M8950	
Warranty	1 Year	
Features		
Video Interface	VGA and DVI-D	
Touch Screen Type	5-Wire Resistive Touch Screen	
Touch Screen Interface	Serial and USB-B	
Control Settings	Front panel button	
Mounting Styles	Panel Mount and 19" EIA Rack Mount	
Power		
Voltage	24 Vdc nominal voltage range 12 to 24 Vdc	
Operating Current	~100 mA	
Physical Characteristics		
Dimensions	16.61 x 13.31 x 2.68 in (422 x 338 x 68 mm)	
Environmental Limits - Indoor Use Only		
IP Rating	IP65 ingress protection against dust and water spray compliant to the front only.	
Operating Temperature	-20 to 60°C (-4 to 140°F)	
Standards and Certifications		
Refer to External Display Datasheet (154M8401)		

21.5" Industrial Display

21.5" Industrial Display		
Part Number	150M1466	
Warranty	1 Year	
Features		
Video Interface	VGA and DVI-D	
Touch Screen Type	Projected Capacitive Touch Screen	
Touch Screen Interface	USB-B and Serial	
Control Settings	Control buttons on rear panel	
Mounting Styles	Panel Mount and 19" EIA Rack Mount	
Power		
Voltage	24 Vdc nominal voltage range 22 to 26 Vdc	
Operating Current	≈ 200 mA	
Physical Charc	acteristics	
Dimensions	21.98 x 13.77 x 1.88 in (558.4 x 349.8 x 47.7 mm)	
Environmental	Limits - Indoor Use Only	
IP Rating	IP66 ingress protection against dust and water spray compliant to the front only.	
Operating Temperature	-30 to 70°C (-22 to 158°F)	
Storage Temperature	-40 to 75°C (-40 to 167°F)	
Ambient Relative Humidity	10 to 90% non-condensing	

137M5182 Rev. U

21.5" Industrial Display

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Industrial Computer for Display

CPU Module		
CPU	Intel Atom processor E3845 (quad-core, 1M cache, 1.91 GHz)	
System Memory	4 GB	
Storage	SD 3.0 (SDHC/SDXC) 128 GB	
Display	Intel HD Graphics 4000	
Peripherals		
USB	2 – USB-A 2.0	
VGA	Resolution up to 1920 x 1200 pixels at 75 Hz HDDB-15F port	
DisplayPort	Resolution up to 2560 x 1600 pixels at 60 Hz receptacle	
Ethernet	4 – Auto-sensing 10/100/1000 Mbps RJ45 ports Magnetic Isolation Protection 1.5 kV	
Serial	2 – RS-232/422/485 DB9M ports	
Power		
Voltage	12/24 Vdc (11.4 to 36 Vdc)	
Power	Less than 30 W (nominal)	
Physical Characteristics		
Weight	1.75 kg (3.86 lbs.)	
Dimensions	132 x 122 x 87 mm (5.20 x 4.81 x 3.43 in.)	

CPU Module

Environmental Limits - Indoor Use Only

-40 to 70°C (-40 to 158°F) Operating Temperature

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Compliance and Certifications

FCC

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

EMC

European Community Directive:

EMC Directive 2014/30/EU

Standards:

EN 61000-6-2; Immunity for Industrial Environments EN 61000-6-4; Emissions for Industrial Environments

Electrical Safety

European Community Directive:

LV Directive 2014/35/EU

Standards:

EN 61010-1; EN 61010-2-201;

†India - Battery EPR Marking

GE Oil & Gas India Private Limited

EPR Certificate No.: 1.1595372902047E+20

Applies to 60R/BRG01, 60R/CGW01 60R/SIM01, 60R/PPM01, and 60R/CMM01

RoHS

European Community Directive:

RoHS Directive 2011/65/EU

Cyber Security

Designed to meet IEC 62443-4-2

*Maritime

ABS Rules for Condition of Classification, Part 1

- Steel Vessels Rules
- Offshore Units and Structures

*Recorder Output module, Bridge module, and 6U systems approvals pending

Functional Safety

SIL 2

See the SIL User Guide (134M0398) for details regarding SIL implementation.

**PROFINET Field Device Certification Standards

PROFINET V2.4MU3

** Certification pending

Hazardous Area Approvals

For the detailed listing of country and product-specific approvals, refer to the Approvals Quick Reference Guide (108M1756).

For additional technical documentation, please log in to <u>bntechsupport.com</u> and access the Bently Nevada Media Library.

cNRTLus

Class I, Zone 2: AEx/Ex ec nC IIC T4 Gc; Class I, Zone 2: AEx/Ex nA nC IIC T4 Gc; Class I, Division 2, Groups A, B, C, D T4; Class I, Division 2, Groups A, B, C, D T4 (N.I.);

T4 @ Ta= -30°C to +70°C (-22°F to +158°F)

ATEX/IECEx

Ex ec nC IIC T4 Gc Ex nA nC IIC T4 Gc

T4 @ Ta= -30°C to +70°C (-22°F to +158°F)

Ordering Information

60R_SYSTEM - Packaged Chassis

To begin your order, contact your sales representative.

Ordering Option	Description
A - Chassis	Туре
01	3U Rack Mount Chassis
02	3U Panel Mount Chassis
03	3U Bulkhead Mount Chassis
04	6U Rack Mount Chassis
05	6U Panel Mount Chassis
06	6U Bulkhead Mount Chassis
09	3U Rack Mount Maritime Chassis
10	3U Panel Mount Maritime Chassis
B - Power In	put
02	Dual DC Power Input Modules
C - Display	
00	No Display
D - Agency	Approvals
00	None
01	CSA/NRTL/C (CLASS 1 DIV 2)
02	Multi (CSA, ATEX, IECEX)
XXX	Country Specific Approvals
E – Functional Safety System	
NO	Standard System
YES	Functional Safety System

All chassis orders will include the following modules:

• PIM • SIM	• PPM	• CMM
-------------	-------	-------

Two PIM modules are included with the Orbit 60 Chassis.

Specific PIM modules are exclusively used with either the 3U or 6U chassis. The 3U and 6U PIMs are not interchangeable.

> Specific Power Supplies are exclusively used with either the 3U (240 W) or 6U (480 W chassis).

3U Power Input Module

Ordering Option	Description
60R/PIM01-AAA-B	• Power Input Module
AAA – Hazardous A	Area Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

B – SIL Level

0

No SIL

6U Power Input Module

Ordering Option	Description
60R/PIM02-AAA-B	• Power Input Module
AAA – Hazardous A	Area Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

ORBIT 60 SERIES System Overview Datasheet

Ordering Option	Description
B – SIL Level	
0	No SIL
-	

System Interface Module

Ordering Option	Description
60R/SIM01-AAA-B • Sy Module	vstem Interface
AAA – Hazardous Area	Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL
) safety system, SIL or the SIM is not

Communications Gateway Module

Ordering Option	Description
60R/CGW01-AAA-B•I Gateway	RJ-45 Ethernet Comm
AAA – Hazardous Area	Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)

Ordering Option	Description
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL

Protection Processor Module

Ordering Option	Description	
60R/PPM01- Module	AAA-B • Protection Processor	
AAA – Haza	rdous Area Certifications	
00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B – SIL Level		
0	No SIL	
2	SIL 2	

Condition Monitoring Module

Ordering Option	Description
60R/CMM01-AAA	-В

AAA – Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
ххх	Country Specific Approvals
B – SIL Level	
0	No SIL

Bridge Module

Description
B • Bridge
Area Certifications
No Hazardous Area
CSA/NRTL/C (Class I, Div 2)
Multi (CSA, ATEX, IECEx)
Country Specific Approvals
No SIL
SIL 2

Industrial Bridge Fiber Cables

Ordering Option	Description
60X/BIC01-AA	
AA – Cable Length	
02	2 meters
03	3 meters
06	6 meters

PAV (Prox/Accel/Vel) Module

Ordering Option	Description
60R/INP01-A	AA-B

AAA – Hazardous Area Certifications

XXX	Country Specific Approvals
02	Multi (CSA, ATEX, IECEx)
וכ	CSA/NRTL/C (Class I, Div 2)
00	No Hazardous Area

Ordering Option	Description
0	No SIL
2	SIL 2

PAA (Prox/Accel/Aero) Module

Ordering Option	Description
60R/INP02-	ААА-В
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL
2	SIL 2

PAS (Prox/Accel/Seismic) Module

Ordering Option	Description
60R/INP03-AAA-B	
AAA – Hazardous Area Certifications	

00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B – SIL Level		
0	No SIL	
2	SIL 2	

PAD (Prox/Accel/DCLVDT) Module

Ordering Option	Description

60R/INP04-AAA-B

AAA – Hazardous Area Certifications

00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
xxx	Country Specific Approvals	
B – SIL Level		
0	No SIL	
2	SIL 2	

PVT (Prox/Accel/Velom)

Ordering Option	Description
60R/INP05-4	AA-B

AAA – Hazardous Area Certifications

No Hazardous Area		
CSA/NRTL/C (Class I, Div 2)		
Multi (CSA, ATEX, IECEx)		
Country Specific Approvals		
B – SIL Level		
No SIL		
SIL 2		

Keyphasor Input Module

Ordering Option	Description
60R/INP06-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area

Ordering Option	Description	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
ххх	Country Specific Approvals	
B – SIL Level		
0	No SIL	
2	SIL 2	

AC LVDT Input Module

Ordering Option	Description
60R/INP10-AAA-B	

AAA – Hazardous Area Certifications

00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B – SIL Level		
0	No SIL	
2	SIL 2	

RTD / TC Temperature Module

Ordering Option	Description
60R/INP07-AA-B	
AA – Hazardous A	rea Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
ххх	Country Specific Approvals

B – SIL Level

Ordering Option	Description
0	No SIL
2	SIL 2

Isolated Process Variable / Discrete Input Module (PVD)

Ordering Option	Description
60R/INP09-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	

0 No SIL 2 SIL 2

Recorder Output Module

Ordering Option	Description
60R/REC01-AAA-B	
AAA – Hazardous	Area Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL

0	
2	SIL 2

Electromechanical Relay Module

Ordering Option	Description
60R/RLY01-AAA-E	3
AAA – Hazardous	Area Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
ххх	Country Specific Approvals
B – SIL Level	
0	No SIL
1	SIL 1

Solid State Relay Module

Ordering Option	Description
60R/RLY02-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
ххх	Country Specific Approvals
B – SIL Level	
0	No SIL
1	SIL 1

External Display

Bently Nevada offers three display systems with different resolution, capabilities, mounting options, accessories, and certifications. Not all options are available for all displays.

60X/EXDAA-BB-CC

AA – Display

60X/EXDAA-BB-CC		
01	10.4" Hazardous Area Display	
02	15" Hazardous Area Display (for Class 1 Div 2) CSA/NRTL/C	
04	21.5" Display	
BB – Agency Approvals		
00	No Approval Certifications	
01	CSA/NRTL/C (Class 1 DIV 2) (only available for the 60X/EXD01 10.4 in display and 60X/EXD02 15 in display)	
02	Multi (CSA, ATEX, IECEX) (only available for the 60X/EXD01 10.4 in display)	
CC – Mounting Options		

00 100	
01	19" Rack Mount Panel
02	Panel Mount Kit
04	Independent Mount (only available for the 60X/EXD01 10.4 in display)

Industrial Computer for Display

60X/CI	MP01-AA
--------	---------

AA – Agency Approvals

00	No Approval Certifications
01	CSA/NRTL/C (Class 1 DIV 2)
02	Multi (CSA, ATEX, IECEX)

Includes DIN Mounting Kit, 24 Vdc 90-Watt DIN Mountable Power Supply, USB Mouse, 24 Vdc Power Cable, 10' (3 m) Ethernet Cable. A 20' Ethernet cable accessory is available.

Front Panel Configurations

60X/CMP01-AA		
3U Front Panel: SIM w/ No Display		
60R/PNL01	with options for country- specific codes	
3U Front Panel: No SIM & No Display		
60R/PNL03	with options for country- specific codes	
6U Front Panel: SIM w/ No Display		
60R/PNL07	with options for country- specific codes	

No part number is offered for Bulkhead spare or replacement front panel.

Accessories

Part Number	Description
Dongles and Cables	
60X/BTC01	Buffered Transducer Breakout Kit
3500 to Orbit 60 3U Chassis Retrofit Kits	
60X/RFT01	Rack-mounted Retrofit Kit
60X/RFT02	Panel-mounted Retrofit Kit (Powder Coated)
60X/RFT03	Panel-mounted Retrofit Kit (Stainless Steel)
60X/RFT06	Bulkhead-mounted Retrofit Kit

External Barriers

Part Number	Description
175502	3-pin Transducer Barrier
177241	2-pin Velomitor Barrier
175990 or 170M3559	Thermocouple Barrier
170M3559	RTD Barrier

External Galvanic Isolators

Part Number	Description
103M7134	3-pin Transducer Isolator
103M7134	2-pin Transducer Isolator
154M1361	Thermocouple Isolator
103M7138	RTD Isolator

Configuration Software

Part Number	Description
60X/CFG	Orbit Studio Configuration Software

AC/DC Industrial Power Supply

Specific Power Supplies are exclusively used with either the 3U (240 W) or 6U (480 W chassis).

Ordering Option	Description

60X/XPS01-AAA • 240 Watt AC/DC (3U) Industrial Power Supply

AAA – Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

60X/XPS02-AAA • 480 Watt AC/DC (6U) Industrial Power Supply

AAA - Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)

Ordering Option	Description
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

Miscellaneous

Part Number	Description
60X/KEY01	System Key
60R/BLK01	Blank: Module slot blank cover

Glossary of Terms

Accel	Acceleration
Aero	Aeroderivative
API	American Petroleum Institute
BRG	Bridge
вто	Buffered Transducer Output
CE	Case Expansion
CGW	Communication Gateway Module
CIDE	Complementary Input Differential Expansion
СММ	Condition Monitoring Module
СОМ	Common
DCM	Distributed Condition Monitoring
DCS	Distributed Control Systems
DR(DE)	Dual Ramp (Differential Expansion)
EGD	Ethernet Global Data
ESD	Emergency Shutdown Device
EIA	Energy Information Administration
EMR	electromechanical Relay
HAZLOC	Hazardous Location
HTVAS	High Temperature Velocity/Accel Sensor
ı/o	Input/Output
IEPE	Integrated Electronics Piezo-Electric
ITC	Isolated Thermocouple
КРН	High Speed Keyphasor
LVDT	Linear Variable Differential Transformer
NC	Normally Closed
NEMA	National Electrical Manufacturers Association
NO	Normally Opened
NSSRDE	Non-Standard Single Ramp Differential Expansion
NTP	Network Time Protocol
OEM	Orginal Equipment Manufacturer
PAA	Prox, Accel, Aero
PAD	Prox, Accel, Displacement Module
PAS	Prox, Accel, Seismic

PAV	Prox, Accel, Velom
PIM	Power Input Module
PLC	Programmable Logic Controller
РРМ	Protection Processing Module
Prox	Proximitor
PVD	Isolated Process Variable, Discrete Input
ΡVΤ	Positive Voltage Transducer
REB	Roller Element Bearing
REC	Recorder Outputs
RMC	Remote Monitoring Center
RST	Reset
RTD	Resistance Temperature Detector
SAI	System Alarm Inhibit
SCDE	Single Channel Differential Expansion
SHLD	Shield
SIL	Safety Integrity Level
SIM	System Interface Module
SSR	Solid State Relay
SSRDE	Standard Single Ramp Differential Expansion
SW	Software
тс	Thermocouple
TLS	Transport Layer Security
RTD/TC	Resistance Temp Detector / Thermocouple
тср/ір	Transmission Control Protocol Internet Protocol
ТМ	Trip Multiply
OEM	Orginal Equipment Manufacturer
Velom	Velomitor

Copyright 2025 Baker Hughes Company. All rights reserved.

Bently Nevada, Orbit Logo, Keyphasor, Velomitor, Proximitor, and System 1 are registered trademarks of Bently Nevada, a Baker Hughes business, in the United States and other countries. The Baker Hughes logo is a trademark of Baker Hughes Company. All other product and company names are trademarks of their respective holders. Use of the trademarks does not imply any affiliation with or endorsement by the respective holders.

Baker Hughes provides this information on an "as is" basis for general information purposes. Baker Hughes does not make any representation as to the accuracy or completeness of the information and makes no warranties of any kind, specific, implied or oral, to the fullest extent permissible by law, including those of merchantability and fitness for a particular purpose or use. Baker Hughes hereby disclaims any and all liability for any direct, indirect, consequential or special damages, claims for lost profits, or third party claims arising from the use of the information, whether a claim is asserted in contract, tort, or otherwise. Baker Hughes reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Baker Hughes representative for the most current information.

The information contained in this document is the property of Baker Hughes and its affiliates; and is subject to change without prior notice. It is being supplied as a service to our customers and may not be altered or its content repackaged without the express written consent of Baker Hughes. This product or associated products may be covered by one or more patents. See Bently.com/legal.

1631 Bently Parkway South, Minden, Nevada USA 89423 Phone: 1.775.782.3611 (US) or Bently.com/support Bently.com

